
Projet de Traitement du Signal
Segmentation d’images SAR

Introduction
En analyse d’images, la segmentation est une étape essentielle, préliminaire à des

traitements de haut niveau tels que la classification, la détection ou l’extraction d’ob-
jets. Elle consiste à décomposer une image en régions homogènes. Les deux principales
approches sont l’approche région et l’approche contour. L’approche région cherche à
regrouper les pixels présentant des propriétés communes alors que l’approche contour
vise à détecter les transitions entre régions. Des détecteurs efficaces ont été développés
dans le cadre de l’imagerie optique, mais s’avèrent inadaptés aux images radar de par
la présence d’un bruit multiplicatif appelé speckle. L’objectif de ce projet est d’effec-
tuer la segmentation d’une image radar à synthèse d’ouverture (Image RSO ou Image
SAR pour Synthetic Aperture Radar) à l’aide d’une méthode originale de détection de
ruptures appliquée successivement sur les lignes et colonnes de l’image. La méthode
est issue d’une publication intitulée “An Optimal Multiedge Detector for SAR Image
Segmentation” publiée en mai 1998 dans la revue IEEE Transactions on Geoscience
and Remote Sensing [1].
Ce projet s’articule en 4 parties.

1) Génération d’une ligne image
Cette partie consiste à générer des lignes d’image radar conformément au modèle pro-
posé par l’article. La méthode de segmentation choisie sera d’abord testée sur ces lignes
avant d’être appliquée à des images.

2) Analyse spectrale
Dans cette partie, le signal synthétique est étudié à l’aide des outils classiques d’ana-
lyse spectrale (corrélogramme, périodogramme). Les courbes obtenues peuvent être
comparées aux résultats théoriques énoncés dans la publication.

3) Détection des contours
Le détecteur ROEWA est appliqué au signal simulé. Il est basé sur des contrastes locaux
de niveau radiométrique moyen.

4) Application à des images radar
La segmentation d’une image est réalisée en plusieurs étapes. Les ruptures sont détectés
successivement en ligne et en colonne de façon à créer une carte des contours délimitant
les régions de radiométrie différente.

1èrePartie : Génération d’une ligne d’image SAR
1) Ligne d’image non bruitée R(x)

Une ligne d’image apparaı̂t comme une juxtaposition de segments de réflectivité constante.
Elle est correctement modélisée comme un processus constant par morceaux dont les
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sauts d’intensité obéissent à un processus de Poisson de paramètre λ. On rappelle que la
largeur des segments obéit alors à une loi exponentielle de paramètre λ, 1

λ représentant
le nombre moyen de pixels séparant deux sauts d’intensité. (Remarque : c’est le nombre
de transitions par intervalle de temps qui suit une loi de Poisson de paramètre λ). Pour
simplifier l’analyse, générer un signal binaire à valeurs dans {1, 2} construit sur un
processus de Poisson de paramètre λ. Vérifier que le processus ainsi construit est sta-
tionnaire et ergodique à l’ordre un (on déterminera la moyenne arithmétique (spatiale)
de chaque réalisation et la moyenne statistique pour chaque pixel xi). On admettra la
stationnarité et l’ergodicité à l’ordre 2. Observer et commenter l’influence du paramètre
λ sur les signaux générés.
Remarque : la fonction exprnd sous Matlab génère des échantillons suivant la loi expo-
nentielle de paramètre 1/λ.

Conformément à l’article [1], générer alors un processus discret à valeurs dans
{0, ..., 255} construit sur un processus de Poisson de paramètre λ.
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FIG. 1 – Ligne d’image non bruitée

2) Bruit Multiplicatif n(x) (Speckle)
Générer une suite de variables aléatoires indépendantes suivant une loi Gamma (fonc-
tion gamrnd) de moyenne µn = 1 et de variance σ2

n = 1/L, où L correspond au
nombre de vues moyennées. Comparer l’histogramme de ces variables aléatoires à la
densité de la loi Gamma correspondante (fonction gampdf).
Remarque : Matlab considère que la densité de la loi Gamma est :

f(x|α, β) = 1
βαΓ(α)x

α−1e−
x
β .

3) Ligne d’image bruitée I(x)
Construire l’intensité d’une ligne d’image Radar à l’aide de I(x) = R(x)n(x). Ob-
server l’effet de L sur l’intensité I(x) (en considérant par exemple L = 1, L = 4 et
L = 10).
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FIG. 2 – Ligne d’image perturbée par un bruit multiplicatif (speckle).

2èmePartie : Analyse Spectrale d’une ligne d’image SAR
Pour simplifier l’analyse, on commence tout d’abord par étudier le signal binaire à

valeurs dans {1, 2} construit sur un processus de Poisson de paramètre λ. On rappelle
que la fonction d’autocovariance d’un tel processus s’écrit :

CRR(τ) = E [(R(x)−mR) (R(x− τ)−mR)] = σ2
re−λ|τ |,

où mR = E [R(x)] est la moyenne de la ligne d’image. La densité spectrale de
puissance est définie comme la transformée de Fourier de la fonction d’autocovariance

SRR(f) =
2λσ2

r

λ2 + 4π2f2
.

1) Périodogramme
Calculer le périodogramme d’une réalisation en utilisant une fenêtre rectangulaire et de
Hanning. Comparer le résultat obtenu avec la densité spectrale de puissance associée
au processus é tudié.

2) Périodogramme cumulé
Déterminer la moyenne des périodogrammes de différentes réalisations du signal ap-
pelée périodogramme cumulé. Commenter le résultat obtenu.

3) Corrélogramme
Déterminer les estimations biaisées et non-biaisées de la fonction d’autocorrélation du
processus étudié à l’aide d’une réalisation de ce processus. En déduire une estimation
par corrélogramme de la densité spectrale de puissance du processus.
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FIG. 3 – Périodogramme
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FIG. 4 – Périodogramme cumulé

Annexes

Périodogramme/Corrélogramme
La densité spectrale de puissance (DSP) d’un signal à énergie finie est définie par

S(f) = TF [Kx(τ)] = |X(f)|2

où X(f) est la transformée de Fourier x(t) et Kx(τ) sa fonction d’autocorrélation.
Il en découle deux méthodes d’estimation de la DSP appelées périodogramme et
corrélogramme.

– Périodogramme
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Lorsqu’on estime la transformée de Fourier avec l’algorithme de FFT rapide de
Matlab, on montre qu’un estimateur satisfaisant de la DSP du signal x(t) appelé
périodogramme est défini par :

1
N
|TFD[x(n)]|2

où x(n) est obtenu par échantillonnage de x(t).
– Corrélogramme

L’estimation de la DSP par corrélogramme comporte deux étapes :
1) Estimation de la fonction d’autocorrélation (xcorr.m) qui produit K̂x(n)
2) Transformée de Fourier discrète de K̂x(n)f(n), où f(n) est une fenêtre de
pondération et K̂x(n) est l’estimation biaisée ou non biaisée de la fonction d’au-
tocorrélation.

Remarque 1 : il est important de noter que lorsque K̂x(n) est l’estimateur biaisé de
la fonction d’autocorrélation de x(t), le corrélogramme coı̈ncide exactement avec le
périodogramme comme le montre la figure suivante (obtenue avec une fréquence nor-
malisée f̃e = 0.1 :
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FIG. 5 – Fig. 5. Corrélogramme biaisé et Périodogramme

Remarque 2 : Implantation numérique
Si le signal numérique x(n) possède Nspoints, la fonction xcorr calcule la fonction
d’autocorrélation K̂x(n) pour n = −(Ns − 1), ...,−1, 0, 1, ..., (Ns − 1) (on a donc
2Ns − 1 points). On peut “padder” cette autocorrélation par des zéros afin d’avoir une
représentation plus précise de la DSP. L’algorithme de transformée de Fourier discrète
de Matlab nécessite une symétrisation de la fonction d’autocorrélation de la façon sui-
vante :

– Points d’autocorrélation K̂x(0), K̂x(1), ..., K̂x(Ns − 1)
– Nz zéros
– zéro central
– Nz zéros
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– Points d’autocorrélation K̂x(Ns − 1), ..., K̂x(1)
Cette procédure de symétrisation est illustrée sur la figure suivante pour Ns = 4 et

Nz = 4 :

FIG. 6 – Symétrisation de la fonction d’autocorrélation

3èmePartie : Détection de Ruptures sur une ligne d’image
SAR

La détection s’effectue au moyen d’une fenêtre d’analyse glissante. Une forte différence
de réflectivité moyenne de part et d’autre d’un pixel permet de repérer un contour. Cette
méthode, bien adaptée aux images optiques, est mise en défaut pour l’imagerie radar.
La présence d’un bruit multiplicatif augmente en effet le taux de fausses détections
dans les régions de forte réflectivité. Pour pallier cette limitation, l’article propose
un détecteur basé non plus sur des différences, mais sur des rapports de réflectivité
moyenne. En outre, les moyennes arithmétiques sont remplacées par des moyennes
pondérées exponentiellement pour traiter les cas de contours multiples (présence de
plusieurs contours dans la fenêtre d’analyse). Les plus proches voisins du pixel cen-
tral sont ainsi favorisés aux dépens de pixels plus éloignés pouvant correspondre à un
nouveau contour.

Conformément à l’article [1], on désire réaliser un filtre appelé filtre ISEF de réponse

6



impulsionnelle
f(x) =

α

2
e−α|x|

où α dépend de L, λ, de la moyenne µR et de l’écart type σR de la réflectivité. Pour
calculer µR et σR pour un processus à valeurs discrètes {1, ..., nr}, on pourra utiliser
les formules de sommation :

nr∑

k=0

k =
nr(nr + 1)

2
nr∑

k=0

k2 =
nr(nr + 1)(2nr + 1)

6
.

Le résultat du filtrage avec le filtre ISEF est le meilleur estimateur linéaire de la réflectivité
au sens de la moyenne quadratique.

On commence tout d’abord par étudier le signal binaire à valeurs dans {1, 2} construit
sur un processus de Poisson de paramètre λ bruité par le bruit de scintillement (spe-
ckle).

1) Synthétiser le filtre ISEF au moyen d’un filtre RIF. Montrer que le filtrage de I(x)
par ce filtre réalise un débruitage de la ligne de l’image SAR. Commenter ce résultat
à l’aide de l’article [1]. Quelques résultats typiques sont représentés sur les figures
ci-dessous :
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FIG. 7 – ligne non bruitée

2) Conformément à l’article [1], déterminer le rapport des moyennes pondérées ex-
ponentiellement noté rmax (opérateur ROEWA) et montrer qu’il permet d’estimer la
position des ruptures.
3) Que se passe-t-il lorsque le signal d’analyse est un processus discret à valeurs dans
{0, ..., 255} construit sur un processus de Poisson de paramètre λ et bruité par du spe-
ckle ?
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FIG. 8 – ligne bruitée
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FIG. 9 – ligne débruitée

4èmePartie : Détection de Ruptures sur une image TEST
La détection de contours sur une image est réalisée en deux temps. Le détecteur

ROEWA est d’abord appliqué successivement à chaque ligne de l’image, préalablement
lissée dans la direction opposée, pour obtenir la carte horizontale des contours rX (x, y) .
En opérant de façon similaire dans la direction verticale, la carte verticale des contours
est construite. Ces deux composantes peuvent alors être combinées pour former la carte
des contours en deux dimensions :

r2D (x, y) =
√

r2
X + r2

Y .

Retrouver les résultats obtenus sur les images de la figure 5 de l’article [1]. Appli-
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FIG. 10 – Détection de transitions sur une ligne image non bruitée.

quer enfin la méthode à des images non simulées telles que l’image satellitaire de
la ville de Bourges (prendre L = 4). Pour afficher une image, utiliser ”imagesc”.
Comme on peut le voir, les résultats de segmentation peuvent être décevants dans le
cas d’images bruitées. Observer l’effet de la segmentation sur des images synthétiques
de Matlab (par exemple, charger l’image eight avec ”load imdemos eight”, transformer
les pixels de cette image en réels avec ”y=double(eight)”) et montrer que les résultats
s’améliorent sensiblement.
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FIG. 11 – Image idéale / lignes verticales
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An Optimal Multiedge Detector
for SAR Image Segmentation

Roger Fj�rtoft, Armand Lop�es, Philippe Marthon, Associate Member, IEEE , and Eliane Cubero-Castan

Abstract|Edge detection is a fundamental issue in image
analysis. Due to the presence of speckle, which can be
modeled as a strong, multiplicative noise, edge detection
in synthetic aperture radar (SAR) images is extremely
di�cult, and edge detectors developed for optical images
are ine�cient. Several robust operators have been devel-
oped for the detection of isolated step edges in speckled
images. We here propose a new step edge detector for SAR
images, which is optimal in the minimummean square error
(MSSE) sense under a stochastic multiedge model. It com-
putes a normalized ratio of exponentially weighted averages
(ROEWA) on opposite sides of the central pixel. This is
done in the horizontal and vertical direction, and the mag-
nitude of the two components yields an edge strength map.
Thresholding of the edge strength map by a modi�ed version
of the watershed algorithm and region merging to eliminate
false edges complete an e�cient segmentation scheme. Ex-
perimental results obtained from simulated SAR images as
well as ERS-1 data are presented.

Index Terms| Edge detection, multiedge model, region
merging, segmentation, speckle, synthetic aperture radar
(SAR), watershed algorithm.

I. Introduction

S
EGMENTATION is the decomposition of an image in
regions, i.e., spatially connected, nonoverlapping sets

of pixels sharing a certain property. A region may for
example be characterized by constant re
ectivity or tex-
ture. Region-based segmentation schemes, such as his-
togram thresholding and split-and-merge algorithms, try
to de�ne regions directly by their content, whereas edge-
based methods try to identify the transitions between dif-
ferent regions.
In images with no texture, an edge can be de�ned as an

abrupt change in re
ectivity. In the case of optical images,
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an edge is usually de�ned as a local maximum of the gra-
dient magnitude in the gradient direction, or equivalently,
as a zero-crossing of the second derivative in the direction
of the gradient. Smoothing is necessary prior to deriva-
tion, as di�erential operators are sensitive to noise. The
smoothing and di�erentiation operations are merged and
implemented by two-dimensional (2-D) �lters. Gradient-
based edge detection basically consists in calculating the
di�erence of the local radiometric means on opposite sides
of the central pixel. This is done for every pixel position in
the vertical and horizontal direction, and the magnitude of
the components is computed. Finally, local maxima of the
gradient magnitude image are extracted.

Owing to the multiplicative nature of speckle, edge de-
tectors based on the di�erence of average pixel values detect
more false edges in areas of high re
ectivity than in areas of
low re
ectivity in synthetic aperture radar (SAR) images
[1]. Certainly, other measures than the di�erence can be
used to identify abrupt transitions. Several edge detectors
with constant false alarm rates (CFAR's) have been devel-
oped speci�cally for SAR images, e.g., based on a ratio of
averages [1], [2] or a likelihood ratio [3], [4]. However, these
operators use the arithmetic mean for the estimation of lo-
cal mean values, which is optimal only in the monoedge
case. Segmentation schemes based on region growing [5],
[6], histogram thresholding [7], and simulated annealing [8]
have also been proposed for SAR images.

In this article we concentrate on the spatial aspect of
edge detection, based on a multiedge model. We incorpo-
rate the speci�c properties of SAR images and develop a
linear minimum mean square error (MMSE) �lter for the
estimation of local mean values. In this way we obtain
a new edge detector with improved noise suppression and
edge detection properties. Section II explains the prin-
ciple of monoedge detection in SAR imagery. In section
III we develop an optimal multiedge detector and pro-
pose a thresholding method which extracts closed, skele-
ton boundaries. The use of region merging to eliminate
false edges is also described. Experimental results obtained
from simulated SAR images and ERS-1 data are presented
in section IV. We discuss theoretical aspects and experi-
mental results in section V, and end with some concluding
remarks in section VI.

II. Monoedge detection in SAR images

Speckle is a deterministic e�ect common to all imaging
systems relying on coherent illumination. It is due to the
constructive and destructive interference of the responses
of the di�erent elementary scatterers of a resolution cell.
In the measured intensity image I , speckle is well modeled
as a multiplicative random noise n, which is independent



Fig. 1. One-dimensional monoedge model.

of the radar re
ectivity R [9]

I(x) = R(x) � n(x): (1)

The transfer function of the SAR system is designed to
vary as little as possible over the bandwidth of interest. It
is known to have negligible in
uence on the spectrum of the
ideal image, but to limit the bandwidth of the noise spec-
trum. This e�ect is here incorporated in the term n. Fully
developed speckle is Gamma distributed with mean value
�n = 1 and variance �2n = 1=L, where L is the equivalent
number of independent looks (ENIL) of the image [9].
Several CFAR edge detectors have been developed for

SAR images based on the monoedge model, which sup-
poses that only one step edge is present in the analyzing
window (Fig. 1). For example, Touzi et al. showed that
edge detectors based on the Ratio Of Averages (ROA) have
CFAR, because the standard deviation �I is proportional
to the mean intensity �I [1]. The ratio is normalized to lie
between zero and one

rmin = min

�
�̂1
�̂2

;
�̂2
�̂1

�
(2)

where �̂1 and �̂2 are the arithmetic mean intensities of the
two halves of a window of �xed size. The normalized ratio
is calculated in four (or more) directions, by splitting the
analyzing window along the horizontal, vertical and diag-
onal axes. The minimum of the four values thus obtained
is �nally compared to an edge detection threshold, which
is set according to the accepted probability of false alarm
(PFA), i.e., the probability of detecting an edge in a zone
of constant re
ectivity.
The principle of the likelihood ratio (LR) detector is to

estimate the ratio of the probability that the analyzing
window covers two regions separated by a given axis to the
probability that the entire window belongs to one single
region. Transforming the LR for edge detection in SAR
images into a log-likelihood di�erence yields [4]

`edge = � (�N1 log �̂1 �N2 log �̂2 +N0 log �̂0) (3)

where � is the order parameter of the Gamma distribution
of the SAR image, N1, N2, �̂1, and �̂2 are the number
of pixels and the arithmetic mean values of the two half
windows, and N0 and �̂0 are the corresponding parameters
for the entire window. Oliver et al. recently showed that
the ROA operator coincides with the LR operator if only
the averages are estimated on equally sized halves of the
sliding window [4].

Fig. 2. One-dimensional multiedge model.

The unbiased maximum likelihood (ML) estimator of
the mean value of a Gamma distributed stationary pro-
cess, is the arithmetic mean [4]. The ROA and LR op-
erators both use this estimator. It is optimal under the
monoedge model, i.e., as long as the width of each half
window does not exceed the minimum distance between
signi�cant edges. In SAR images the signal to noise ratio
is very low, typically 0 dB for single-look images. To suf-
�ciently reduce the in
uence of the speckle, an important
number of pixels must be averaged in each half window.
So there is a con
ict between strong speckle reduction and
high spatial resolution, and the chosen window size consti-
tutes a compromise between these two requirements. This
illustrates the limitations of the monoedge model.

III. Multiedge detection in SAR images

For most scene types, the large windows that we use to
detect edges in SAR images are likely to contain several
edges simultaneously. In fact, we need to estimate the lo-
cal mean values f�̂rig of a signal which undergoes abrupt
transitions with random intervals. The monoedge hypoth-
esis is generally not veri�ed, and the arithmetic mean is
no longer optimal. Estimators with nonuniform weighting
should therefore be considered. The �lter coe�cients de-
cide the weighting of the pixels as a function of the distance
to the central pixel. For our application, they should op-
timize the tradeo� between noise suppression and spatial
resolution, based on a priori knowledge of image and noise
statistics.

A. Multiedge model

We restrict ourselves to a separable image model. In the
horizontal as well as in the vertical direction we suppose
that the re
ectivity image (ideal image) R is a stationary
random process composed by piecewise constant segments
of re
ectivity frig, with mean value �r and standard devi-
ation �r . The localization of the re
ectivity jumps fxig fol-
lows a Poisson distribution with parameter � corresponding
to the mean jump frequency, i.e., the probability of k jumps
in the interval �x is given by

pk(�x) =
(��x)k

k!
e���x:

The re
ectivities frig and the jump localizations fxig are
supposed to be independent. Hence �R = �r and �2R =
�2r . Fig. 2 illustrates the multiedge model in the one-
dimensional (1-D) case. Although it is idealized, this model



is a good approximation for important scene types, such as
agricultural �elds.
It can easily be shown that the autocovariance function

of the re
ectivity is [10]:

CRR(�x) = �2re
��j�xj:

The ideal image is thus a separable �rst-order Markov pro-
cess with parameter �. The power spectral density, which
we here de�ne as the Fourier transform of the autocovari-
ance function, is then

SRR(!) =
2��2r

�2 + !2
: (4)

B. Linear MMSE �lter

Let us now develop the linear MSSE �lter for the esti-
mation of the local mean under the stochastic multiedge
model and the multiplicative noise model. It should not be
confused with an adaptive speckle �lter [11], which restores
the re
ectivity of a pixel based on the local statistics. The
MMSE �lter will be split along the vertical and horizontal
axes, and the weighted means estimated in the di�erent
half windows will be used for edge detection. To facilitate
the implementation, we suppose the �lter to have separable
impulse response f2-D(x; y) = f(x)f(y) and �rst consider
the one-dimensional case. The best unbiased linear estima-
tor of the re
ectivity is of the form [12]

R̂(x) = �R + f(x) � (I(x)� �I): (5)

Minimizing the mean square error E
h
jR(x)� R̂(x)j2

i
yields the transfer function [12]

F (!) =
�nSRR(!)

SRR(!) � Snn(!) + �2RSnn(!) + �2nSRR(!)
: (6)

The autocovariance function of the speckle decreases very
rapidly [9]. As an approximation, n will be considered as
white noise here

Cnn(�x) = �2n�(�x)

Snn(!) = �2n = 1=L

By substituting the power spectral densities and mean val-
ues into (6) and taking the inverse Fourier transform we
obtain the optimal impulse response

f(x) = Ce��jxj

where

�2 =
2L�

1 + (�R=�R)2
+ �2 (7)

and C is a normalizing constant. From the multiplicative
noise model (1) we have �R = �I and

�2R =
L�2I � �2I
L+ 1

which can be estimated from the speckled image. The av-
erage region width 1=� can be evaluated visually, or we can

Fig. 3. Impulse response of the in�nite symmetric exponential �lter
(ISEF).

estimate � from the spectrum of a speckle-reduced image
(4) obtained by adaptive �ltering [11].
We normalize f with respect to the mean value, i.e.,

C = �=2, to obtain an unbiased estimator. With this nor-
malization f(x) � �I = �I and (5) simpli�es to

R̂(x) = f(x) � I(x):

We can thus apply the �lter directly to the measured in-
tensity image I .
The impulse response of f(x) is shown in Fig. 3. As

we see, the �lter is of in�nite extent, which for the two-
dimensional �lter f2-D(x; y) = f(x)f(y) means that the
analyzing window centered on the pixel to be �ltered covers
the entire image. The weight of the surrounding pixels
decreases exponentially with distance. The further a pixel
is from the center, the more likely it is to belong to another
region, and the less in
uence it has on the estimated local
mean. We note that f2-D is not strictly isotropic.
The �lter f is known as the in�nite symmetric exponen-

tial �lter (ISEF). The ISEF is the basis of the edge detec-
tor of Shen and Castan [13], which computes the di�erence
of the exponentially weighted means in each half window.
This is an optimal multiedge detector for images degraded
by additive white noise. It is claimed to have better edge
localization precision than other edge detectors proposed
for optical images [13]. We have now shown that the same
type of smoothing �lter is optimal in the case of multi-
plicative noise. However, as explained in section I, edge
detectors based on the di�erence of averages are not suited
for SAR images.
We also note the analogy between the ISEF and the Frost

speckle �lter [11]. Frost et al. assumed the local variations,
within stationary regions of the image, to be a �rst or-
der Markov process and developed an adaptive restoration
�lter where local statistics control the slope of the expo-
nential weighting function. We use the �rst order Markov
process as a global image model for the optimization of a
nonadaptive �lter.
In the discrete case, f can be implemented very e�-

ciently by a pair of recursive �lters [13], [14]. We de�ne
two discrete �lters, f1(n) and f2(n), realizing the normal-
ized causal and anti-causal part of f(n), respectively

f1(n) = a � bnu(n); (8)

f2(n) = a � b�nu(�n); (9)

where 0 < b = e�� < 1, a = 1� b, and u(n) is the discrete
Heaviside function. The smoothing function can now be
rewritten as

f(n) = c � bjnj �
1

1 + b
f1(n) +

b

1 + b
f2(n� 1)



where c = (1� b)(1 + b).
By taking the z-transform of (8) and (9) we obtain

F1(z) =
a

1� bz�1

F2(z) =
a

1� bz

In terms of the spatial index n, convolution with f1(n) and
f2(n) corresponds to the following simple recursions

s1(n) = a e1(n)

+ b s1(n� 1) n = 1; : : : ; N (10)

s2(n) = a e2(n)

+ b s2(n+ 1) n = N; : : : ; 1: (11)

Here e1(n) and e2(n) are the inputs, and s1(n) and s2(n)
are the outputs of f1 and f2, respectively. To minimize the
number of multiplications, we may rewrite (10) and (11) as

s1(n) = a (e1(n)� s1(n� 1))

+ s1(n� 1) n = 1; : : : ; N

s2(n) = a (e2(n)� s2(n+ 1))

+ s2(n+ 1) n = N; : : : ; 1:

The computational cost for f1 and for f2 is thus one mul-
tiplication per pixel. Due to the normalizing factors, f
necessitates four multiplications per pixel.

C. The ROEWA operator

Based on the linear MMSE �lters described above, we
propose a new ratio-based edge detector: the ratio of expo-
nentially weighted averages (ROEWA) operator. The ex-
ponentially weighted averages �̂1 and �̂2 are normalized
to be unbiased, and we show in the Appendix that their
variance is proportional to the variance of the raw image.
The standard deviation remains proportional to the mean
value, so the ROEWA operator has CFAR [1]. As opposed
to Touzi et al., (2), we normalize the ratio to be superior
to one

rmax = max

�
�̂1
�̂2

;
�̂2
�̂1

�
: (12)

The two approaches are of course equivalent. Our choice is
motivated by the particular algorithm that we use in the
edge extraction step.
To compute the horizontal edge strength component, the

image I(x; y) is �rst smoothed column by column using the
one-dimensional smoothing �lter f . Next, the causal and
anti-causal �lters f1 and f2 are employed line by line on
the result of the smoothing operation to obtain �̂1(x) and
�̂2(x)

�̂X1(x; y) = f1(x) � (f(y) ? I(x; y))

�̂X2(x; y) = f2(x) � (f(y) ? I(x; y)):

Here � denotes convolution in the horizontal direction and ?
denotes convolution in the vertical direction. The normal-
ized ratio rXmax(x; y) is found by substituting �̂X1(x�1; y)
and �̂X2(x + 1; y) into (12). The vertical edge strength

component is obtained in the same manner, except that
the directions are interchanged

�̂Y 1(x; y) = f1(y) ? (f(x) � I(x; y))

�̂Y 2(x; y) = f2(y) ? (f(x) � I(x; y)):

Finally, with analogy to gradient based edge detectors for
optical images, we take the magnitude of the two compo-
nents

jr2-Dmax(x; y)j =
q
r2Xmax(x; y) + r2Y max(x; y):

In the edge strength map thus obtained, a high pixel value
indicates the presence of an edge. For each pixel this im-
plies a total of 14 multiplications, an average of 3 divisions,
and 1 square root operation.

D. Edge extraction

By thresholding the edge strength map we obtain pixels
which, with a certain PFA, belong to edges. If the threshold
is set too high, we miss important edges, and if it is set
too low, we detect a lot of false edges. Plain thresholding
will in general produce several pixel wide, isolated edge
segments. The edges can be thinned to unity width e.g.,
using morphological closing [1]. The problem of forming
closed boundaries from spatially separated edge segments
is quite complicated. If the edges are not closed, they do
not de�ne a segmentation of the image.
The watershed algorithm [15] is a simple and e�cient

edge detection method which gives closed, skeleton bound-
aries. The edge strength map is considered as a surface and
the algorithm detects local maxima by immersion simula-
tion. In its original form, the watershed algorithm retains
all of the local maxima of the edge strength map, which
separate di�erent basins. It unfortunately tends to pro-
duce massively over-segmented images. We have chosen to
introduce an edge detection threshold in the algorithm [16].
Only edge strength magnitudes over the chosen threshold
are considered. Local maxima with lower magnitudes are
supposed to be due to noise. With this modi�cation, the
algorithm detects, thins and closes signi�cant edges in one
operation. The modi�ed watershed algorithm is illustrated
in Fig. 4.
We do not have any analytical expression for the dis-

tribution of the exponentially weighted means. When the
slope of the exponential function is moderate, however, we
may suppose a Gaussian distribution according to the cen-
tral limit theorem. The variance of the distribution as a
function of the variance of the raw image, the speckle cor-
relation and the �lter parameter b is given in the Appendix.
The relation between detection threshold and PFA can be
established theoretically for the ROEWA operator based
on the Gaussian hypothesis. In fact, as the Gamma distri-
bution �ts a Gaussian distribution very closely when the
ENIL is a few tenths or higher, the PFA computed for the
ROA operator [1] can also be used for the ROEWA for typ-
ical values of b. The ENIL of the exponentially weighted
mean is equal to the ENIL of the raw image multiplied
by the equivalent number of independent pixels in the half
window, which is given in the Appendix. The PFA applies
to the vertical or horizontal edge strength component, but
only as an approximation to their magnitude. Moreover,



(a)

(b)

Fig. 4. (a) Initial state of the modi�ed watershed algorithm shown on
a cross-section of an edge strength map. (b) Skeleton boundaries
detected after complete immersion.

watershed thresholding reduces the PFA compared to plain
thresholding, as also false edges are thinned to unity width.
The e�ect of this nonlinear operation is di�cult to quan-
tify. With our approach, the theoretical PFA for a given
threshold can therefore only serve as a rough indication.
A particularity of watershed thresholding is that the

whole edge is eroded if the edge strength magnitude of
one single edge pixel is below the detection threshold. The
threshold must consequently be set relatively low for the
algorithm to form meaningful boundaries, but then we are
bound to detect numerous false edges as well.

E. Post-processing

Spurious edges can be eliminated by merging adjacent
regions whose re
ectivities are not signi�cantly di�erent.
Several merging criteria have been proposed, including the
Student's t-test [6] and the unequal variance Student's t-
test [14]. The LR of Oliver et al. [4] can also be used to
decide whether or not two regions should be merged, and
again constitutes an optimal criterion. In fact, `merge =
�`edge (3)

`merge = � (N1 log �̂1 +N2 log �̂2 �N0 log �̂0) : (13)

Thus `merge � 0, and a value close to zero suggests that
the two regions together form a Gamma-homogeneous re-
gion. It should be noted, however, that we in many ap-
plications seek a thematic segmentation, so that weak tex-
tures within the regions can be accepted. In practice, nega-
tive thresholds are used. The more irregularities we accept

within the regions, the further the threshold can be from
zero. Again, the threshold can be related to the PFA [4].
Geometrical considerations, such as region size [14] and

edge regularity [6], may also be taken into account in the
merging process, based on a priori knowledge about the
size and shape of the regions. The order in which the re-
gions are merged has a strong in
uence on the �nal re-
sult. Finding the globally optimal merging order requires
much time-consuming sorting. The iterative pairwise mu-
tually best merge criterion [17] is a locally optimal approach
which is much quicker. First all regions are compared with
their neighbors in terms of the merging criterion, and the
results are stored in a dynamic array. The array is then
traversed sequentially, and a region A is merged with an
adjacent region B if and only if B is the closest neighbor
of A according to the merging criterion, and if A is also
the closest neighbor of B. When two regions are merged,
the local statistics of the resulting region must be updated
and the comparison with all its neighbors must be redone
before continuing. The array is traversed repeatedly until
no adjacent regions satisfy the merging criterion.

IV. Experimental results

The novelty of our detector is that it relies on weighted
means rather than on the arithmetic means used by other
CFAR detectors. To study the in
uence of the nonuni-
form weighting, we compare the ROEWA operator with
the ROA operator. For both detectors the normalized ratio
rmax is computed vertically and horizontally, and the mag-
nitude of the two components constitutes the edge strength
map. We use the modi�ed watershed algorithm for thresh-
olding, because it directly yields skeleton boundaries, lo-
calized on local maxima of the edge strength map. This
property facilitates the subsequent tests.
A quantitative comparison of edge detectors can only be

e�ectuated on simulated images, as we need to know the
exact position of the edges in advance. Let us �rst consider
a \cartoon image" composed of vertical bands of increas-
ing width, from 2 to 18 pixels. The ratio between the
re
ectivities of the bright and the dark lines is 12dB. This
reference image was multiplied with a simulated single-look
speckle image. The correlation coe�cients of the speckle is
�(1) = 0:42, �(2) = 0:03, and �(m) = 0, m > 2, in azimuth
as well as in range. The ideal image and its single-look
speckled counterpart are shown in amplitude in Fig. 5 (a)
and (b), respectively. Edge strength maps were calculated
on the speckled image with both operators. Single-look
images are extremely noisy, so strong smoothing is neces-
sary. The ROEWA operator with b = 0:9 produced a very
regular edge strength map giving rise to few false edges. To
obtain the same reduction of speckle variance with a half
window for both operators, and thus the same false alarm
rate for a given detection threshold, the window size for
the ROA operator was set to 39� 39 (see the Appendix).
A threshold of 1:85 gave the best compromise between the
detection of real edges and the suppression of false ones.
The resulting segmentations are shown in Fig. 5 (c) and

(d). The ROEWA operator gives a systematic detection
of edges for bands of width 8 or higher, whereas the ROA
operator detects systematically only from width 13. Some
spurious edges are present near the edges in the case of the
ROA operator. The experiment indicates that the ROEWA
operator has better spatial resolution than the ROA oper-



(a) (b)

(c) (d)

Fig. 5. (a) Ideal image consisting of vertical lines of width 2 to 18 pixels. (b) The simulated single-look speckled image. (c) The segmentation
obtained with the ROA edge detector and watershed thresholding. (d) The segmentation obtained with the ROEWA edge detector and
watershed thresholding.

ator, for a given speckle reduction capacity. However, we
have chosen a very strong smoothing to place ourselves in
a multiedge situation. We could of course use a smaller
window and detect edges at at �ner scales with the ROA
operator, at the risk of a higher false alarm rate.
Let us now examine a more realistic case. We synthe-

sized the cartoon image shown in amplitude in Fig. 6 (a)
by a �rst order Markov random �eld with four classes.
The re
ectivity ratio between subsequent classes is 6dB.
This image approximately corresponds to the multiedge
model presented in section III-A. The mean region width
1=� = 13:4 pixels. Fig. 6 (b) shows the same image mul-
tiplied with single-look speckle. The correlation properties
of the speckle are the same as in the previous example.
To compare the performance of the edge detectors, we use
Pratt's �gure of merit [18]:

P =
1

max fNDE ;NIDg

NDEX
i=1

1

1 + �d2i
;

where NID is the number of ideal edge pixels, NDE is the
number of detected pixels and di is the distance between
the ith detected edge pixel and the closest true edge pixel.
� is a calibration constant that is usually set to one. How-
ever, as the edges are dense in our test image, so that the
nearest ideal edge pixel never is far away, we set � = 2 for a
stronger penalization of misplaced edge pixels. We accept
the closest pixel on each side of a transition as an ideal
edge pixel, i.e., di = 0 for every pixel having at least one
pixel belonging to another region in its 4-neighborhood.
The distance di to an ideal edge for the remaining pixels is
obtained as follows: di = 1 is attributed to all remaining
pixels having one or more pixels with di = 0 in their 4-

neighborhood. Among the pixels not yet attributed, di = 2
is set for every pixel having at least one pixel with di = 1
in its 4-neighborhood, and so forth.

Edge strength maps were computed by the ROA oper-
ator with window sizes from 3 � 3 to 19 � 19 and by the
ROEWA operator with the parameter b varying over the
range 0:1 to 0:8. For each edge strength map the detec-
tion threshold maximizing Pratt's �gure of merit was de-
termined. Fig. 7 shows the result. The unit along the hor-
izontal axis is the equivalent number of independent pixels
in each half of the analyzing window in terms of the speckle
reduction obtained by smoothing (see the Appendix). This
allows us to compare the results obtained with the ROA
operator with di�erent window sizes, with those obtained
by the ROEWA operator using exponential weighting func-
tions of varying slope. From Fig. 7 we see that the ROEWA
operator yields a better score than the ROA operator over
most of the parameter range. However, the di�erence is rel-
atively small near the maximum of the graphs, and for one
window size (7�7) the ROA operator performs even better
than the ROEWA operator. The di�erence in favor of the
ROEWA operator increases with stronger smoothing. This
re
ects the fact that the multiedge model is more relevant
the larger the analyzing window is. The ROA operator is
optimal in the monoedge case, which is more frequently
encountered when using small windows. The localization
of the maxima of the graphs should not be taken too lit-
erally. Such a weak smoothing generally implies an im-
portant number of false edges due to speckle. A stronger
smoothing gives more meaningful boundaries. The theoret-
ical optimum for the ROEWA operator, according to (7),
is b = 0:74, which corresponds to about 30 independent
pixels in each half window.



(a) (b)

Fig. 6. (a) Ideal image synthesized by a �rst order Markov random �eld. (b) The corresponding single-look speckled image.
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Fig. 7. Pratt's �gure of merit for the ROA edge detector with varying
window size, and for the ROEWA edge detector with varying
slope, applied to the single-look speckled Markov random �eld
image.

Results on real world data are a useful supplement to
simulations, but here only a visual appreciation can be
given. A multitemporal series of three-look ERS-1 images
of an agricultural scene near Bourges, France, was used
to test edge detectors and post-processing. An extract of
a color composition of 3 dates acquired with monthly in-
tervals is shown in Fig. 8. Note the close resemblance
between this scene and the simulated image in Fig. 6. The
edge strength maps of the di�erent dates were averaged,
supposing that no geometrical changes took place between
the acquisitions and that the images are perfectly regis-

tered. Our strategy is to allow a strong over-segmentation
in the edge detection step, and then rely on subsequent
merging to eliminate false edges. The best results were ob-
tained with a 13 � 13 window for the ROA operator and
with b = 0:73 for the ROEWA operator. Given the speckle
correlation, the two detectors have about the same speckle
reduction capacity with these parameters. Visual inspec-
tion of the segmentations revealed only slight di�erences in
favor of the ROEWA operator. We shall use this image to
illustrate how complementary post-processing can improve
the �nal result. Fig. 9 shows the initial segmentation, ob-
tained with the ROEWA operator with parameter b = 0:73
and the modi�ed watershed algorithm with threshold 1:53.
The threshold was deliberately set very low to make sure
that practically all signi�cant edges are detected, resulting
in a massively over-segmented image. All the three merg-
ing criteria mentioned in section III-E were compared. The
LR measure (13) gave the result which agreed best with our
conception of the regions. The unequal variance Student's
t-test gave similar results, whereas the classic Student's t-
test performed poorly. In the �nal segmentation shown in
Fig. 10, the number of regions has been reduced from over
5000 to about 600. Adjacent regions for which the log-
likelihood `merge > �1:85 for all three dates were merged.
The threshold indicates that we accepted some irregular-
ities within the regions. In addition, regions containing
only one pixel were supposed to be due to speckle and thus
eliminated. The merging order was de�ned by the iterative
pairwise mutually best merge criterion. Almost all regions
that we can distinguish by eye have been detected. Some
regions still seem to be split in several parts, the edges
are sometimes irregular due to speckle, and the corners are
slightly rounded due to the strong smoothing used by the
edge detector. It is, nevertheless, a surprisingly good SAR
image segmentation.



Fig. 8. Extract of a color composition of three SAR images of an
agricultural scene near Bourges, France c
ESA { ERS-1 data {
1993, Distribution SPOT Image.

V. Discussion

The estimator of local means used by the ROEWA oper-
ator is optimized for a stochastic multiedge model. We
have shown that an exponentially weighted mean with
a correctly adjusted slope gives the optimal tradeo� be-
tween localization precision and speckle suppression when
the re
ectivity jumps follow a Poisson distribution. This
multiedge model is primarily adapted to describe scenes
composed of distinct regions of relatively uniform re
ec-
tivity, but of strongly varying size. Exponential weight-
ing is strictly optimal only for scene types which corre-
spond exactly to the stochastic image model. Moreover,
we supposed uncorrelated speckle. Equivalent estimators
for other scene models and for correlated speckle can be
developed by substituting the appropriate spectral density
functions into (6), but the impulse response will in general
not be any simple, analytic function like the one that we
found here.
The arithmetic mean, used by the ROA operator, is the

ML estimator of the mean value for a stationary process.
The ROA operator is hence spatially optimal in a mo-
noedge context, i.e., when the distance between edges is
larger than the width of a half window. If the regions gen-
erally are big, as compared to the window size that is nec-
essary to obtain a su�cient speckle suppression, the ROA
operator is bound to perform better than the ROEWA op-
erator.
To decide whether or not the ROEWA operator can bring

an improvement, as compared to the ROA operator for a
given image, several factors must be considered: the aver-
age region size and the variations in region size, the contrast
between di�erent regions, the ENIL, and the speckle cor-
relation. The ROEWA should theoretically perform bet-
ter than the ROA operator when the re
ectivity approxi-
mately corresponds to the multiedge model, the mean re-

Fig. 9. Over-segmented image obtained by the ROEWA operator
and watershed thresholding.

Fig. 10. Segmentation obtained by the ROEWA operator, watershed
thresholding and region merging.

gion width is small, and the ENIL is low. With increasing
ENIL or mean region width, the monoedge model becomes
more appropriate, and the ROA operator can be expected
to perform better.

The experimental results con�rm the theoretical discus-
sion above. Edge detection on a single-look image com-
posed of vertical bands of gradually increasing width in-
dicate that the ROEWA detector permits a strong speckle
reduction without degrading the spatial resolution as much



as the ROA operator. Here we have deliberately placed
ourselves in a rather extreme multiedge situation.
On another simulated single-look image, where the re-


ectivity closely approximates the proposed multiedge
model, the ROA and ROEWA detectors were compared
over a wide range of window sizes and corresponding slopes
of the exponential weighting function, in terms of Pratt's
�gure of merit. For the smallest windows, the monoedge
hypothesis is generally veri�ed and the superiority of the
ROA operator is con�rmed, even though the scores are very
close. With stronger smoothing, corresponding to larger
windows, the multiedge model becomes more relevant, and
the performance di�erence in favor of the ROEWA opera-
tor increases steadily. Strong smoothing is here necessary
to avoid numerous false edges due to speckle, due to the
low ENIL and the high speckle correlation.
A hybrid segmentation scheme, which combines the pro-

posed edge detection method with LR region merging, was
shown to give excellent results on multitemporal ERS-1
images of an agricultural scene. The di�erence between the
results obtained by the ROA and ROEWA operators was
small. This re
ects the fact that typical regions are so large
that the monoedge model is just as appropriate as the mul-
tiedge model for the window size used. Such segmentations
can e.g., be used to improve thematic classi�cations [19].
It should be stressed that this is a very rapid segmentation
method. On a Silicon Graphics INDY workstation with
a MIPS R4400 200MHz CPU and 64 MB of memory, the
ROEWA operator, the watershed thresholding, and the LR
region merging needed only 12 s to process three channels
of 512� 512 pixels to produce the result in Fig. 10. This
makes our method more than an order of magnitude faster
than another sophisticated SAR segmentation scheme, the
RWSEG algorithm [5], which is implemented in the CAE-
SAR module of the ERDAS IMAGINE software package.
The quality of the results are comparable.

VI. Conclusion

In this article, we propose a new CFAR edge detector for
SAR images, which is optimal under a stochastic multiedge
model. It has been shown to perform better than the ROA
operator for images which closely approximate the multi-
edge model, especially when the average region width is
small and the ENIL is low. The ROEWA operator, water-
shed thresholding, and LR region merging constitute a very
e�cient segmentation scheme. The watershed thresholding
can be replaced by more advanced edge extraction meth-
ods, e.g., based on the powerful concepts of basin dynamics
[20] and edge dynamics [21].
The ROEWA operator is a simple, nonadaptive edge de-

tector. There are several other approaches to edge detec-
tion and segmentation in a multiedge context. Multires-
olution ROA operators [22] combine the ratios computed
with di�erent window sizes according to their statistical
signi�cance. The ideal solution would be a spatially adap-
tive LR operator, which varies the window size, the window
form and the way it is split, so that the local arithmetic
means are estimated on complete, uniform regions. How-
ever, these perfectly homogeneous zones are unknown, and
di�cult to identify in the presence of speckle. The prac-
tical solution is to try to iterate towards the best segmen-
tation. The RWSEG algorithm [5], for example, combines
edge detection and region growing iteratively. Stochastic

methods based on Markov random �elds and simulated an-
nealing [8] iterate towards a segmentation which minimizes
a global cost function. Such methods may give even better
results, at the cost of a higher computational complexity.

Appendix

Let us suppose the intensity I to be a wide-sense sta-
tionary process. Taking the block-average of N pixels,

�̂Ib = 1=N
PN

k=1 Ik, reduces the variance with a factor N
if the pixels are uncorrelated

�2Ibu =
�2I
N

If the pixels are correlated

�2Ibc =
�2I
N2

NX
k=1

NX
l=1

�(jk � lj) (14)

where �(m), m � 0, are the autocorrelation coe�cients.
In SAR images, the speckle correlation typically becomes

insigni�cant for distances superior to 2 or 3 pixels. More
generally, we may suppose �(m) = 0,m > M , andM � N ,
so that (14) can be rewritten as

�2Ibc =
�2I
N2

"
N + 2

MX
k=1

(N � k)�(k)

#
: (15)

The factor with which the variance is reduced gives us the
equivalent number of independent pixels in the analyzing
window. Let us now consider the speckle reduction ob-
tained by one half window of the ROEWA operator. We
�rst employ the ISEF f in one direction

�2Ifc = �2I

1X
k=�1

1X
l=�1

f(k)f(l)�(k � l)

= �2I

�
1� b

1 + b

�2 1X
k=�1

MX
m=�M

bjkj+jk+mj�(m)

= �2I

�
1� b

1 + b

�2 MX
m=�M

�
jmj+

1 + b2

1� b2

�
bjmj�(jmj):

The normalized causal �lter f1 in the perpendicular direc-
tion gives

�2If1c = �2Ifc

1X
k=0

1X
l=0

f1(k)f1(l)�(k � l)

= �2Ifc
(1� b)2

1� b2

"
1 + 2

MX
m=1

b3m�(m)

#
:

The equivalent number of independent pixels in a half win-
dow of the ROEWA operator is thus �2I=�

2
If1c

, which can
be compared to the corresponding number for a half win-
dow of the ROA operator obtained by employing (15) in
the horizontal and vertical direction.
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