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All-Purpose and Plug-In Power-Law Detectors for
Transient Signals

Zhen Wang and Peter K. Willett, Senior Member, IEEE

Abstract—Recently, a power-law statistic operating on discrete
Fourier transform (DFT) data has emerged as a basis for a remark-
ably robust detector of transient signals having unknown structure,
location, and strength. In this paper, we offer a number of im-
provements to Nuttall’s original power-law detector. Specifically,
the power-law detector requires that its data be prenormalized
and spectrally white; a constant false-alarm rate (CFAR) and self-
whitening version is developed and analyzed. Further, it is noted
that transient signals tend to be contiguous both in temporal and
frequency senses, and consequently, new power-law detectors in
the frequency and the wavelet domains are given. The resulting
detectors offer exceptional performance and are extremely easy to
implement. There are no parameters to tune. They may be consid-
ered “plug-in” solutions to the transient detection problem and are
“all-purpose” in that they make minimal assumptions on the struc-
ture of the transient signal, save of some degree of agglomeration
of energy in time and/or frequency.

Index Terms—Crack detection, nonlinear detection, signal de-
tection, sonar detection.

I. INTRODUCTION AND CONTEXT

A. Background

I T IS often of considerable interest to identify short-duration
nonstationarities in observed signals. Applications include

surveillance (e.g., [6]) in which an acoustic “transient” may in-
dicate the presence of a threat, industrial monitoring (e.g., [16]),
in which the number and severity of transients reflects machine
health, and medicine (e.g., [2]). Naturally, the problem is com-
paratively simple if the signal to be detected is known—the only
uncertainty is the time of occurrence, but knowledge of the tran-
sient is usually not available or dependable; of interest here is
to detect transient signals with unknown form, location, and
strength. The hypothesis test is naturally composite, with any
structure open to challenge. Basically, the detector is tasked to
determine whether all observations belong to a known stationary
probability distribution or whether they do not.

Now, if there were nothing whatever that could be assumed
about a transient signal, the detection task would be more or less
hopeless. There are, fortunately, two rather qualitative proper-
ties that most transient signals possess. The first is the obvious
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temporal contiguity: A transient signal is often couched as a lo-
calized burst (or bursts) in time, although the duration of such a
burst is unknown in most applications. The second is a tendency
for most transient signals to be bandpass, that is, it is reasonable
to expect most of a transient signal’s energy to be contained in
contiguous frequency observations, although again, there is usu-
ally little to be said aboutwhich frequencies.

To exploit only the former, and considering a transient event
as a two-sided change (at some unknown time, the observations
switches from having pdf to having pdf , and at a later time,
there is a return to ), Page’s test has been explored and found
to be quite useful [1], [5]. Very similar to this, Nuttall couched
a transient as a contiguous burst of bins in time, where
is known, and developed the “maximum” detector [13]. To ex-
ploit only the latter, there are detectors that begin their work
on frequency domain data (usually DFT bins). Via (maximum
likelihood) estimation of unknown signal parameters via the es-
timation–maximization (EM) algorithm, a GLRT approach is
presented [21]. Of greatest interest here is Nuttall’s frequency
domain “power-law” detector [12], which will be introduced
shortly. It is natural to use both kinds of contiguities, and for this,
we have, for example, the Gaussian-mixture time-spectrogram
model in [17] and the GLRT approaches arising from linear data
transformations (either time-frequency or time-scale) [3], [10],
[11]. These transforms are directed toward signal representation
and classification, trying to distinguish signals in the transform
domain.

In [23], an attempt was made to compare the performances
of a number of the above transient detection approaches on a
fairly wide variety of signals. Those using time contiguity alone
(Page and “maximum”) were perhaps the sturdiest performers
overall but suffer from the need that certain parameters (signal
strength or length) be prespecified and that data be prewhitened
and prenormalized. Among the others, it was surprising that
the most robust performance came from the simplest processor:
Nuttall’s frequency-domain power-law statistic. It is a very good
detector indeed, and in this paper, we show a number of ways
to make it better still.

B. Nuttall’s Power-Law Statistic

There has been significant recent attention to Nuttall’s
power-law detector [12], [14] due to its simple implementation
and good performance. The test is based on the following
formulation. Under the signal-absent hypothesis ()—that the
time-domain data is complex white Gaussian noise—prepro-
cessing by the magnitude-square DFT yields independent and
identically distributed (iid) exponential random variates. Under

1053–587X/01$10.00 © 2001 IEEE
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the signal-present hypothesis (), the DFT observations are
no longer a homogeneous population of exponentials; Nuttall’s
basic assumption is that there aretwoexponential populations:

(1)

where
unit step function (unity for positive argument and
zero otherwise);
total number of FFT bins;
magnitude-squared FFT bins;
subset with size .

It is assumed that signal-present bins are uniformly dis-
tributed among the FFT bins. Clearly, the precise probability
law under depends on the transient signal itself, and there
is no particular reason to take (1) as fact. Nevertheless, there is
considerable flexibility in (1) (mostly through the unspecified

), and the detector arising from it seems to work remarkably
faithfully.

At any rate, dealing with the above model, Nuttall developed
power-law statistics [12] as an approximation to the optimal de-
tector, and these have the form

(2)

where is an adjustable exponent. Notice that is the en-
ergy detector that is optimal for , and , which
is the maximum-magnitude FFT bin, corresponds to the GLRT
for . Through extensive computational work, it has been
found that the best compromise value foris 2.5 when infor-
mation about is completely unavailable. Performance of this
particular power-law detector is close to the best in this class of
detectors. This independence from of the power-law is for-
tunate.

The above power-law statistic requires prenormalized data,
meaning that in the model must be available. As an extension
of power law to unknown noise level () cases, a constant false-
alarm rate (CFAR) version was introduced [15]:

(3)

Clearly, is not affected by a scale factor.
The statistic (2) does a yeoman’s job at detecting a wide va-

riety of block inhomogeneities, and it might be wondered why
this paper, intending to improve on it, has been written. The an-
swer is three-fold, as follows.

1) The statistic (2) is designed with white noise of known
power in mind; the fact is that the performance of (3) is
disappointing in white noise, whereas for colored noise,
it has very little appeal at all. We thus extend (2) in a
natural way. We estimate the noise power and normalize
on a bin-by-bin basis.

2) The statistic (2) is essentially optimal [12] given its
frequency-domain model of (1) when there is nothing
whatever known about the signal-bearing set. How-
ever, there is some tendency for real transient signals
to aggregate their energy in a band, meaning thathas
some structure. The challenge is to take advantage of this
tendency when it exists while avoiding any degradation
in performance when it does not. We believe that we have
achieved this through the simple expedient of combining
contiguous DFT bins.

3) Similar to the previous point, there is a definite tendency
for real transient energy to be agglomerated in the time
domain, and a magnitude-square DFT essentially de-
stroys any such information, but there is no reason why a
DFT must be the preprocessing step. We investigate the
(obvious) extension that a transform other than the DFT
be used.

Basically, the power-law detector is as yet neither a plug-in so-
lution nor is it as good as it can be, and we offer some remedy
here.

The organization of the paper is as follows. In Section II,
we first describe the detection problem for the colored noise
case and derive the associated CFAR (bin-by-bin normalized)
power-law statistics. It is necessary to revisit the assumptions
by which the adjustable exponent[see (2)] is set, and we pro-
pose a measure by which it should be chosen. In Section III,
we propose extensions to exploit the contiguities of the tran-
sient and thus develop new detectors both in the frequency and
the wavelet domain. It is unsatisfying to report on new detector
structures without advice in threshold-setting, and in Section IV,
we derive both the normal and saddlepoint approximations to
the signal-absent distributions, and naturally, we compare these
to simulation. Numerical comparisons between the detectors are
presented in Section V, and we offer concluding remarks in Sec-
tion VI.

II. CFAR POWER-LAW DETECTOR

A. Problem Description and the CFAR Power-Law Statistic

The focus of this section is to detect transients buried in
colored noise with unknown but stationary spectrum. Clearly,
the CFAR Power-Law in [15, eq. (3)] is to be applied to
white noise and is not suitable here. As shown in Fig. 1, we
write in a matrix a block of time domain observations
as , where is a column vector of
dimension whose th element is the time sample of index

.1 We immediately transform each column to
its magnitude-squared frequency domain equivalent, and
record . It is assumed that s

1To avoid possible contamination of this “reference” dataset by a transient’s
incipient edge, it is best to ignore a “guard” of a few blocks of data prior to that
under test.



2456 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

Fig. 1. Data and preliminary processing. Original time-domain sequence is reorganized into blocks, and the column-wise magnitude-square FFT is performed.

are independent and that are known to be
noise-only samples.2 The probability density function (pdf) of
the th element of has the form

(4)

where are unknown but stationary.
Note that the spectral behavior of a nonwhite background is

faithfully represented by the s. It is assumed that for the
entire block of observation, theth frequency bin maintains a
mean background energy level for each of the blocks of

data. The first blocks provide some estimate of this
level for each bin, and the goal is to test for some elevation in
these levels in thelast ( th) block. More specifically, the pdf
of the under hypothesis follows a distribution identical
to . On the other hand, when signal
energy is present in theth bin, the density of becomes

(5)

where is the relative signal power per bin, that is, the overall
transient signal energy is , in which is the number
of signal-energy-bearing DFT bins. Overall, we have the model

2This assumption of independence is in practice only approximate. In what
follows, for analysis, we use the assumption; our simulations are based on time
domain signals, and naturally, there is a truer representation of the dependency
structure.

(6)

where indicates the (unknown) subset with (unknown) size
out of bins in which transient signal energy is to be found.

Note that although this model may appear to have a batch flavor,
Fig. 1 indicates that transient signals are to be detected on-line,
although block-by-block. Each block of data that tests negative
for transient signal energy joins the “window” of reference data,
and hence, the least-recent block is removed to make room for
it.

Following ideas similar to those frequently used in radar
CFAR processing (e.g., [4]), we define the normalized magni-
tude-squared frequency-domain observations as

(7)

and the new power-law statistic as

(8)

where is a real exponent. Clearly, is non-negative and
is CFAR with respect to in the model of (6). Note that
normalization schemes alternative to that in (7) could be chosen.
For example, one could define in which
denotes the element among whose rank is . It is
possible that such a scheme would offer improved robustness
[4], but due to its similarity to (8), we do not discuss it here.

B. SNR Analysis to Choose

The best value for the powerin (8) is, in general, strongly
dependent on , which is the number of signal-present bins.
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Fig. 2. SNR analysis for Nuttall’s power-law statistics, with settings outputSNR = 24, N = 1024. (Left) Required input aggregate SNR for power-law
detectors with different�. (Right) Input SNR-loss for different�.

This is not at all desirable since our goal is to find a detec-
tion structure that does not depend on knowledge of such signal
qualities. A clever contribution of [12] was the so-called “low-
quality operating point analysis,” and it was found that

is a good choice over a wide range of. This analysis de-
pended on explicit numerical calculation of performance, and
although such analysis was possible for the exponential random
variables in (2), and indeedwouldbe an option in (8), in some of
the later statistics, it is not. Thus, here, we investigate a similar
SNR analysis to suggest the best choice ofin (8) when in-
formation about is unavailable. Signal-to-noise ratio (SNR),
which is sometimes known as deflection [19], is not a com-
pletely accurate determinant of detection performance but is a
widely accepted alternative to exhaustive simulation or numer-
ical integration. Given a statistic, the output SNR can be ex-
pressed as

SNR
Var

(9)

where denotes the conditional expectation, and varis
the conditional variance.

First, we exploit the SNR analysis to evaluatefor the
power-law statistics in [12]. The coincidence between our
results and Nuttall’s suggests that the SNR analysis is a
reasonable method to choose the powerfor our new CFAR
statistics. Based on statistic (2) and model (1), the associated
SNR can be shown to be

SNR (10)

where represents the Gamma function, anddenotes the
total signal power in bins, which is also referred to as the
input aggregate SNR. Our purpose is to evaluate the required
to yield fixed output for each . Example results from
SNR analysis for the power-law detectors with differentare
shown in Fig. 2, where , and the output .

The right plot in Fig. 2 shows the input SNR-loss (ISL),
which, with fixed output SNR and is defined as

ISL (11)

The ISL measures the input aggregate SNR that is sacrificed
through use of a fixed exponent, as compared with the best
possible exponent for that or the corresponding optimal
statistic. At any rate, it is immediately seen that the best value
of , achieving minimum average signal power per bin, changes
with and sweeps through all intermediate values. When
is completely unknown, we obtain the best compromise value
for via ISL ; from the figure, we find
that is that choice. The tendencies and results coincide
well with those obtained from the low-quality operation point
analysis in [12]. Based on this, we claim, as in [12], that

is a good choice for a wide range of .
Encouraged by the above, we apply the input SNR loss anal-

ysis to the detector in (8) to select. It is straightforward to
derive the pdf of under and [8], and hence, we get,
after some algebra, the result

SNR

(12)

where denotes the Beta function and represents the
total signal power in bins, and blocks of previous
DFT outputs are used for normalization. Example results for
power values 1, 1.5, 2, 2.5, and 3, are shown in Fig. 3, where

, output , and .3 It is clear that there
is no reason to explore . It is noted that the best value of,

3The larger the window sizeL, the better the normalization, but the more
susceptible the detector to a nonstationary background. The range6 � L � 32

is often discussed [4] and provides reasonable results; we chooseL = 10 here
as representative of that range.
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Fig. 3. SNR for CFAR power-law statistics, with settings the outputSNR = 6,N = 256. Left figure: SNR for different�; right figure: the input SNR loss for
different�.

providing the minimum average signal power per bin with given
output SNR, changes with . Similar results will be observed
by setting different and output SNR: is a good
choice when information of is completely unknown, as it
yields the least ISL over . Here, appears to be the
best choice.

III. CONTIGUITY-BASED DETECTORS

The knowledge of signal contiguity may aid in detection.
Both time and frequency contiguities are exploited in both the
white- (prenormalized) and colored-noise (self-normalizing)
cases to improve the detection performance. For each case,
the model and the corresponding statistics are described. The
detector is actually a combination of a linear and a power-law
processor. Since precise contiguity information is unavailable,
only the cases of two and three adjacent bins are studied
in this paper. Theoretical justification for these detectors is
not offered; however, they make intuitive sense, and they
work well. Further, although the exponentcould be chosen
differently for difference numbers of aggregated bins, we have
found that this is not a major concern, and we choosefrom
the single-bin analyses of the previous section.

A. Contiguity-Based Detectors in the Frequency Domain

Just as with the power-law detectors in (2), only magnitude-
squared FFT outputs are of concern here. Using the contiguity
tendency in frequency, we modify Nuttall’s assumption that the

signal-present bins are uniformly distributed amongst the
record of to an assumption that there is a tendency that some
of the signal-occupied bins are adjacent.

1) Prenormalized Case:New random variables are obtained
by combining two contiguous frequency bins. We define

. Assuming that the original
are independent and exponential (that is, that this is Nuttall’s
model in which data are assumed already to have been normal-
ized and whitened), yields aGamma random variate.

We define our new power-law detectors

(13)

where and have same meanings as in (1). The statistic
of (13) is easily extended as

(14)

to the case of three contiguous bins, and further extension is
straightforward. Bins are indexed modulo .

2) Self-Normalizing Case:A similar combining
process was adopted in the colored noise case by letting

. This combining approach results in
modified model and generates a new CFAR power-law detector
in the frequency domain as

(15)

The similar detector combines three contiguous bins.

B. Detectors in the Wavelet Domain

For time-domain observations, the DFT transforms a pure
“time description” into a pure “frequency description” and,
thus, clearly cannot take advantage of time contiguity. The
discrete-time wavelet transform (DWT), which is an alternative
to the DFT, is much more local and finds a good compro-
mise—a time–frequency description. Hence, detectors in the
wavelet domain will benefit from both temporal and frequency
contiguity tendencies. The original work of Nuttall explored
only the case the that preprocessing transformation was the
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Fig. 4. Structure used inT andT to combine three adjacent bins in the
wavelet space. Circles illustrate the definitionsU = C + C +

C .

DFT. The extension to other transforms, especially the wavelet
transform, is both natural and (mostly) straightforward. There
are many different choices of wavelet family, and each has its
proponents. However, only the simple Haar wavelet is explored
due to its easy implementation, its orthogonality [20], and due
to the fact that a statistic that assumes as little as possible about
the transient to be detected is preferable.

1) Prenormalized Case:A derivation similar to that of Nut-
tall results in the power-law detector in the wavelet domain, con-
sidering that under a complex Gaussian noise assumption the
magnitude-squared (orthonormal) DWT of the noise-only data
obeys an iid exponential distribution. That is, we have

(16)

where , is the th magnitude-squared DWT
coefficient of scale. The argument is that if time observations

follow an iid normal distribution, the corresponding DWT
vector has identical pdf [22].

In the case of preprocessing by the DFT, it was argued that
there is often a tendency for transient energy to crowd into con-
tiguous frequency bins. There is similarly a tendency for tran-
sient energy to be in nearby wavelet coefficients, as each refers
to a scale that roughly matches that of the transient. As shown
in Fig. 4, it is natural to adopt a tree structure in the WT case,
and similar to of (14), we define

, and and invoke

(17)

Clearly, this detector is obtained by combining three local adja-
cent bins in the wavelet space. It would be possible to combine
two adjacent WT samples at the same scale, but it has proven to
be less effective than hoped, and we do not report it here.

2) Self-Normalizing Case:For each column time-do-
main vector , let the s be the corresponding
magnitude-squared DWT coefficients for each scale index

, intra-block time index ,
and block index . Similar to the frequency
domain, we have

(18)

where

We record , for
, , and .

As in the frequency domain, this combining approach suggests
a new CFAR power-law detector

(19)

in the wavelet domain.

IV. PERFORMANCEANALYSIS

Since we are interested in transients with unknown structure,
location, and strength, our performance analysis will concen-
trate on the prediction of the threshold exceedance probability
of the statistics under and, thus, to choose a proper threshold
to ensure a certain false alarm rate. We use the central limit the-
orem (CLT) to get the normal approximation to the distribution
of the statistics. However, since the normal approximation pro-
vides poor approximation to deep tail probabilities, a procedure
using saddle-point approximation is also introduced. The per-
formance of different statistics are also studied via numerical
simulation, where we set the total number of bins .

In the following analysis, we only consider detectors in the
frequency domain; analysis in the wavelet domain is precisely
equivalent, provided the transform is orthogonal.

A. Normal Approximation

• The Statistic :
This is a summation over iid random variables and, thus,

must converge to a normal distribution by the central limit
theorem [18]. Recall

(20)

which converges in law to a normal distribution by CLT,
provided has finite second moment. As shown
before, follows an iid distribution under

, and thus, we can compute the mean and variance of
as

Var

(21)

Having obtained this mean and variance, we have the fol-
lowing result for : Under the assumption thats are
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Fig. 5. Exceedance probability ofT with normal and saddlepoint approximations as a function of thresholdh. The right-truncated distribution is used in the
implementation of saddlepoint approximation. Here,N = 256, andT = 20 . The approximation results are compared with the simulation results represented by
the solid line.

iid for converges in
law for large to Var .

• The Statistic :
We cannot use the classical CLT directly here since the

detector is a summation over dependent, although iden-
tical, random variables. However, in the following, we
show that the detectors converge to normal distributions
using CLT after a rewriting of the statistics. Observe that
we can rewrite as

(22)

where . Since are iid
under (we assume for convenience), we know
that are iid. Thus, and
converge in law to

[recorded as ] via the CLT.
Now, since , we know that follows

distribution , where

Var Var

is the correlation coefficient, which is affected by the
power law . If , we note that ; thus,
clearly, ; if , our calculation reveals that

. For noninteger , a numerical method has
to be used to calculate. Fortunately, is close to unity;
thus, to simplify, we set and thus approximate
as convergent in law to .

• The Statistic :
Approximating as in the analysis of , we

have that converges in law to , where
and

• The Statistic :
For the detector as defined in (15), we know

follows the distribution. Again, assuming
that , we approximate as convergent in law
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Fig. 6. Exceedance probability ofT with normal and saddlepoint approximation as a function of thresholdh. Here,N = 256, andL = 10. The right-truncated
distribution is used in the implementation of saddlepoint approximation, andT = 10 . The approximation results are compared with the simulation results
represented by the solid line.

to , where and
Var

Var

(23)

• The Statistic :
As in the previous cases, and using

(24)

we approximate as convergent in law to
.

B. Saddle-Point Approximation

The asymptotic normal distribution derived in the previous
section is easy to work with. However, as we will see later, the

normal approximation tends to estimate the tail probability rela-
tively poorly. To obtain more accurate performance evaluation,
here, we introduce the saddle-point approximation method that
can be thought as a refinement of normal approximation via the
indirect use of the Edgeworth expansion. Here, we state the final
result, and omit the detailed development; see [7].

Let be iid with pdf , and let
be the corresponding Laplace transform

defined for . We define the sample mean
according to [7, eq. (2.2.6)], and hence, the tail probability can
be approximated via the formula

(25)

where is the ML estimate of given , ,
is the Esscher function ofth order, and is the normal-
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Fig. 7. Example of signal and observation process for Figs. 8 and 9. The signal (left panel) is created by passing white Gaussian noise through an FIR filter with
a passband0:4� < ! < 0:6� (the number of signal-present FFT bins is approximately 25). On the right, noise is added.

Fig. 8. Detection performances of new power-law statistics in the frequency and the wavelet domains in the prenormalized case. The exponent in each case is
� = 2:5, and the transient duration isM = 20 samples; different panels refer to the number of frequency bins occupied by the signal.

ized cumulant. A detailed description of the above quantities is
available in [7].4

C. Comparison of Approximations with Simulation

As mentioned earlier, the performance analysis in this sec-
tion is focused on the exceedance probability of the statistics
under the hypothesis. The results obtained using the normal
approximation and the saddlepoint approximation are shown
and compared with results of numerical simulations based on

4In our case, forX obeying pdff(x), the moment generation function
(MGF) does not exist. To resolve this, we simply truncateX to a valueT .

runs, for different statistics and different exponents, with
.

For the white noise (prenormalized) case, we investigate the
statistics and that combine two and three contiguous
FFT bins correspondingly and show the performance analysis
of in Fig. 5. We can see that the normal approximation tends
to underestimate the tail probability, whereas the saddlepoint
approach shows good prediction. It implies both that saddle-
point approximation is an efficient method to analyze the per-
formances of our statistics and and that setting the cor-
relation coefficient as 1 is an acceptable approximation.
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Fig. 9. Detection performances of new power-law statistics in the frequency and the wavelet domains in the prenormalized case. The exponent in each case is
� = 2:5, and the transient duration isM = 50 samples; different panels refer to the number of frequency bins occupied by the signal.

For the colored noise (self-normalizing) case, we investigate
the statistics and and show the result of in
Fig. 6. According to our earlier SNR analysis, we are interested
in . Here, we set and to be consistent
with our later simulations. We can see that the normal approx-
imation estimates the tail probability rather poorly, whereas the
saddlepoint approach shows much better prediction. It is noted,
however, that even the saddlepoint approximation tends to mis-
match the tail probability as grows large.

V. PERFORMANCECOMPARISON

Here , we apply the detectors developed in the previous sec-
tions to numerical examples. For fixed , applying
the thresholds obtained in Section IV, we compare probabilities
of detection against aggregate SNR. TheaggregateSNR is the
total signal energy divided by the total noise variance, meaning
that theper-sample(over the entire block and not just for the
fuzzily-defined duration of the transient signal) SNR should be
divided by this number; for example, excellent performance is
available at an aggregate SNR of 20 dB, and this translates to

4 dB per sample.
Prenormalized Data:The detection performance of the im-

proved detectors in the frequency and the wavelet domains are
compared with the power law of [12] with exponent .
Examples of the signal and noise are shown in Fig. 7 for a
number of signal-containing frequency bins . From
Fig. 8, in which the time-domain transient signal is of length

samples, it is clear that combining two or three con-
tiguous FFT or wavelet bins together does improve the detection
performance over different SNRs. It is also noted that the de-
tector based on the contiguity of wavelet bins shows ad-
vantages over all others, and the explanation is presumably that

utilizes both temporal and frequency contiguity. However,
in the case of a longer transient signal (see Fig. 9) for which the
length is samples, those transients that are more con-
centrated in the frequency domain ( and ) are
best detected by the FFT-based statistic. This is further ex-
plored in Fig. 10; here, contours of the probability of detection
are plotted on transient-length (vertical) and bandwidth (hori-
zontal) axes for detectors and . It is clear that the
wavelet-based detectors are more forgiving than those based on
the short-time frequency transformation, but that transients of
sufficiently narrow bandwidth and broad length are best served
in the latter domain.

Self-Normalizing Case:The results of detectors in the case
that self-normalization is required are shown in Fig. 11. From
comparison with Fig. 9 (the prenormalized case), it is clear
that the losses arising from the need to normalize are relatively
minor. It is also gratifying that the statistic is, in all these
cases, the best.

VI. SUMMARY

In [12], Nuttall derived and justified a new and easy-to-im-
plement statistic for the detection of short-duration (transient)
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(a) (b)

(c) (d)

Fig. 10. Probability of detection contours for (a)T , (b)T , (c)T , and (d)T . These are plotted versus transient lengthM and number of signal-occupant
frequency binsM .

signals: the sum of magnitude-square DFT outputs from a block
of time domain data, each raised to a power typically in the
range of 2 to 3. This test has been found to be very effective in-
deed.

The power-law detector is almost a plug-in transient detector
for all purposes but not quite: Prewhitened and prenormalized
data is required. We have thus extended the power-law detector
to be self-normalizing by raising to an exponent not the DFT
data directly but, instead, the power in each DFT bin relative
to the average power in previous DFTs. While Nuttall provided
some justification both for the exponentiation and exponent in
the original power-law test, their applicability in the self-nor-
malizing case is not straightforward. Consequently, a mode of
analysis (“input SNR loss”) has been proposed for the choice
of exponent. It is found that the optimal exponent is somewhat
lower than in the original (prenormalized) power-law case.

At any rate, the self-normalizing solution works very nicely.
All that is needed to have an all-purpose transient detector with
simple implementation is some means to set the threshold, and
this is provided via a saddle-point approximation.

Along the path to development of the improved CFAR
power-law detector, it was noted that there is a tendency among
real transient signals for energy to aggregate in nearby DFT
bins (i.e., to be bandlimited to some degree). In their formu-
lations, neither the original nor CFAR power-law detectors
take advantage of this, and consequently, a combined-bin
power-law detector is proposed. In experiments, versions of

this are shown to offer significant improvement. These are
made self-normalizing, and a saddlepoint approximation for
threshold setting is provided. It was additionally noted that
the power-law dogma of preprocessing via the DFT is open
to the challenge, and indeed, a power-law processor operating
on (Haar) wavelets is developed, made self-normalizing,
augmented to use combined bins (since transient signals most
transient signals are aggregated not just in frequency but in
time/scale as well), and accorded a saddlepoint approximation
for threshold setting.

Quite a few of the detectors have been developed and ana-
lyzed in this paper. We note that beyond easy choices such as
window size (for CFAR) or type (wavelet/DFT or agglomer-
ating/single-bin) and guided selection of the exponent, there are
no parameters to tune. We thus consider them to be “plug-in”
transient detectors, and since they make minimal assumptions
on the structure of the transient signal, save that it have some
degree of concentration of energy in time and/or frequency, we
advertise them as “all-purpose.” For reference, we give their tax-
onomy in Table I.

Note that the choice of prenormalized versus self-normal-
izing depends on the data, but in either case, our overall con-
clusion is that although all of these tests work well, the com-
bined/wavelet power-law detectors (if data are prenormalized,

, and if self-whitening and CFAR is necessary, ) are
perhaps the finest of all. The statistics are compellingly simple
to use. Take a multiresolution decomposition using the Haar
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Fig. 11. Detection performance of power-law detectors in the frequency and the wavelet domains for transient detection in colored noise. Here, the time-domain
transient length isM = 50, and the exponent used in all cases is� = 1:5.

TABLE I
CATEGORIZATION OF VARIOUS TRANSIENT DETECTORSDISCUSSED IN THIS

PAPER. NUTTALL ’S CFAR POWER-LAW IS “PARTIALLY ” SELF-NORMALIZING

IN THAT IT IS COMPLETELY INSENSITIVE TOSCALE BUT HAS NO MEANS TO

DEAL WITH NONWHITE DATA

basis, normalize the magnitude-square by previous values at
each scale (in the self-whitening case only), combine the result
in groups of three according to Fig. 4, exponentiate (to a power
2.5 if prenormalized and to the power 1.5 if normalized), and
sum. The resulting statistic can be relied on to detect quite a wide
range of transient signals below (often considerably below)3
dB on a sample-by-sample basis.
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