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ABSTRACT

This paper addresses the problem of classifying altimetricsignals ac-
cording to their shapes. The proposed classifier is divided into three
steps. A one-class support vector machine method is first used to
isolate the large amount of Brown-like echoes from others signals
which are considered as outliers. The second step extracts pertinent
features from the the remaining echoes (which cannot be wellde-
scribed by the Brown model). These features are projected onto dis-
criminant axes using linear discriminant analysis. The final step clas-
sifies the projected feature vectors using a standard Bayesian classi-
fier. The proposed three step classification strategy is evaluated on
supervised real altimetric echoes.

1. INTRODUCTION

The use of altimetry measurements over ocean surfaces has been
demonstrating its effectiveness for many years. Due to the improved
ability of new altimeters to acquire return echoes from oceans, many
efforts are now devoted to a better understanding of the signals near
the coasts, in the hydrological basins and over land surfaces. The use
of altimetry measurements over all these surfaces is now a well iden-
tified goal for present and future altimetry missions (conventional
or not). Even though the physical processes that induce altimetric
signals over land, coastal areas and inland water are different, the
contamination of land signals in the altimetric measurements con-
siderably damages the availability and the quality of the data in these
cases. Consequently, it becomes crucial to be able to classify altimet-
ric echoes with different shapes with two main objectives. The first
objective is to propose dedicated algorithms (called retracking algo-
rithms) able to extract the best geophysical information from each
return echo. The second objective is to provide to the user anin-
formation about the signal shape giving him the level of confidence
he can put on the various retracking algorithm output. A previous
work presented in [1] addressed the problem of classifying altimet-
ric signals according to the overflown surface. This paper shows that
the methodology proposed in [1] can be modified for classifying al-
timetric signals according to their shapes.

2. ATIMETRIC SIGNAL MODEL AND PATTERN
RECOGNITION SYSTEM

The objective of this paper is to propose a fast pattern recognition
algorithm for classifying different shapes of altimetric signals. More
precisely, the algorithm will assign a given altimetric signal to one
of K classes denoted asω1, ..., ωK . Each classωi is characterized
by a templateT i = [Ti(1), ..., Ti(N)], N being the echo length.

Fig. 1. Different shapes of altimetric signals to be classified.

The K = 14 class templates used in this study have been studied
in the PISTACH project [2] and are depicted in Fig. 1. A given
altimetric signal from classωi is supposed to be a noisy version of
the corresponding templateT i.

The templateT 1 associated to the first class results from a sim-
plified formulation of Brown’s model. Brown’s model was initially
studied in [3] and [4]. It has been shown to be appropriate to more
than95% of all altimetric waveforms backscattered from ocean sur-
faces [2]. The simplified formulation considered in this paper as-
sumes that the received altimeter waveform is parameterized by three
parameters: the amplitudeP , the epochτ and the significant wave
height SWH. An altimeter waveform denoted ass(t) can be classi-
cally written as

s(t) =
P

2

[

1 + erf

(

t − τ − ασ2
c√

2σc

)]

e
−α

(

t−τ−
ασ

2
c

2

)

+ Pi (1)

where

σ2
c =

(

SWH
2c

)2

+ σ2
p, (2)

erf(t) = 2√
π

∫ t

0
e−z2

dz stands for the Gaussian error function,c

denotes the speed of light,α andσ2
p are two known parameters (de-

pending on the satellite and on the altimeter) andPi is the instrument
thermal noise. The thermal noise can be classically estimated from
the first data samples ofs(t) and subtracted from (1). As a conse-
quence, the additive noisePi can be removed from the model (1)
with a very good approximation. The received signal is sampled
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whereT1(n) = s(nTs) − Pi and the following notations have been
used
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Note that the parameterP in (3) represents the amplitude of the
waveform, the epochτ corresponds to the central point of the “lead-
ing edge”, while the significant wave height SWH is related tothe
slope of the “leading edge”. The three parametersP, τ, SWH can
be estimated from any altimetric signal from classω1 using the
maximum likelihood estimator (MLE) [5]. The mean square error
between the received altimetric signal and the estimated template
T 1 (obtained after replacing the unknown parametersP, τ, SWH by
their MLEs) will be denoted as MSE.

The proposed pattern recognition system contains three differ-
ent components referred to as anomaly detection, feature extraction
and Bayesian classification. These components are detailedin the
following subsections.

2.1. Anomaly detection

Anomaly detection has received a great attention in the literature
(see for instance the recent survey of Chandola [6] and references
therein). This paper concentrates on the one-class supportvector
machine (SVM) method [7, Chap. 8], [8] that has shown interesting
properties in many applications. These applications include docu-
ment classification [9] and audio signal segmentation [10].The one-
class SVM method is used here as a way of isolating Brown echoes
(classω1) from abnormal echoes departing from the Brown model
(classesω2, ..., ω14). This step is interesting since it allows one to
isolate very fast the large number of echoes that can be represented
accurately by the Brown model. Only echoes declared as abnormal
will enter the feature extraction and Bayesian classification blocks.

The anomaly detection procedure considered in this sectionas-
sociates to any altimetric waveform a3 dimensional vectorθB =
(P, τ, SWH) composed of the altimetric signal amplitudeP , epochτ
and significant wave height SWH. A training setχ = {x1, ..., xNt

}
composed ofNt signals associated to classω1 is supposed to be
available. This training set contains Brown echoes associated to real
signals backscattered by ocean surfaces.

The first step of the one-class SVM approach maps the training
data vectors into a feature spaceF via an appropriate transforma-
tion Φ. The transformationΦ is chosen such that the inner product
between two transformed vectorsΦ(x) andΦ(y) defines a kernel
k (x, y) = 〈Φ(x), Φ(y)〉. This paper focuses on the Gaussian ker-
nel defined as

k (x, y) = exp

(

−‖x − y‖2

σ2

)

(4)

where the kernel parameterσ2 has been optimized using the kernel-
alignment criterion developed in [11].

The second step of the one-class SVM method determines a
separating hyperplane between the data vectors of classω1 and the

anomalies (belonging to classesω2, ..., ωK). The separating hyper-
plane is the set of vectorsx such that〈w, Φ(x)〉 − ρ = 0. It is
classically determined by minimizing the following criterion [8]
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for w ∈ F, ρ ∈ R andξ = (ξ1, ..., ξNt
) ∈ R

Nt with the constraints
ξi ≥ 0 and〈w, Φ(xi)〉 ≥ ρ − ξi for i = 1, ..., Nt. Note that the
value of parameterν is related to the fraction of possible outliers as
discussed in [8]. The slack variablesξi account for possible errors in
the anomaly detection procedure. Indeed,ξi > 0 means there is an
error in the classification of the training vectorxi whereasξi = 0
means the vectorxi has been classified without error.

2.2. Feature extraction

After the anomaly detection step, Brown echoes belonging toclass
ω1 have been isolated (more than95% of ocean waveforms are typ-
ically classified as Brown echoes). The second step of the pro-
posed pattern recognition system consists of classifying the remain-
ing signals (which have not been identified as Brown echoes) in the
K − 1 classesω2, ..., ωK . The present study concentrates on alti-
metric waveforms registered by the Jason-2 satellite. Many features
can be computed from an altimetric waveform for classification pur-
poses. These features include statistical moments (mean, variance,
skewness, kurtosis, ...), parameters related to the Brown model (sig-
nificant wave height, backscatter coefficient, ...) or features related
to the shape of the altimetric waveform (peakiness, rise time of the
echo, ...). The features used for classifying altimetric signal shapes
are summarized below

• the latitude (LAT),

• the longitude (LON),

• the retrodiffusion coefficientσ0 = 10 log10(P )+C, C being
a constant related to gain control,

• the parameterσc defined in (2),

• the significant wave height (SWH),

• the maximum value of the echo (MAX),

• the mean value of the echo (MEAN),

• the peakiness defined asMAX
MEAN ,

• the variance of the echo,

• the skewness of the echo,

• the kurtosis of the echo,

• the ramp (slope of the echo between samples1 and60),

• the attitude (slope of the echo between samples40 and104).

It is important to note here that the number of features cannot be
smaller than the number of classes, i.e., has to contain at leastK −
2 = 12 parameters. Following the ideas developed in [1], we pro-
pose to extract pertinent information from these features by using
linear discriminant analysis (LDA). LDA consists of projecting any
data vectorθ (containing the parameters of interest) onto appropri-
ate axes (called discriminant axes). The resulting projected feature
vector will be denoted asθp. The discriminant axes are defined as
the eigenvectorsw associated to the non zero eigenvalues of the fol-
lowing generalized eigenvalue problem

SBw = λSW w, (5)



whereSB and SW are the between-class and within-class scatter
matrices defined as
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and whereΘi is the subset of the learning set containing the param-
eter vectors associated to the classωi, mi is the average of these
parameter vectors andm = 1

n
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nimi is the total mean vector

with n =
∑K

i=2
ni (see [12, p. 117] for more details).

2.3. Bayes decision rule

The Bayesian classifier (BC) is optimal in the sense that it minimizes
the probability of classification error (or an appropriate risk [12, p.
25]). The BC requires to define a loss function summarizing the cost
of the different classification errors. In the case of a zero-one loss
function (i.e., no loss to correct decisions and unit loss toany er-
ror), the BC reduces to the maximum a posteriori (MAP) rule which
assigns a given waveform defined byθp to classωi if

f (θp|ωi) P (ωi) > f (θp|ωj) P (ωj) for all j 6= i

whereP (ωi) is the prior probability of the classωi andf (θp|ωi) is
the probability density function (pdf) ofθp conditionally upon the
classωi. This study assumes that the different classes are equally
likely (i.e., P (ωj) = 1/(K − 1) for all j = 2, ..., K). In this case,
the BC reduces to the maximum likelihood classifier. The maximum
likelihood classifier assignsθp to classωi if f (θp|ωi) > f (θp|ωj)
for all j 6= i. We assume that the conditional pdfsf (θp|ωi) are
Gaussian. Indeed, this assumption has been shown to be reasonable
for the parameters of altimetric waveforms. Note that the statisti-
cal properties of the observed altimetric signals are more difficult to
determine (the template is corrupted by multiplicative speckle noise
with gamma distribution and by additive Gaussian noise). Thus, it is
more complicated to derive the Bayesian classifier based directly on
the altimetric signals.

3. SIMULATION RESULTS

Many experiments have been conducted to validate the proposed
shape classification strategy. The results presented in this paper have
been obtained from a signal database constructed from Jason-2 alti-
metric signals.

3.1. Anomaly detection

The first classification step consists of isolating Brown echoes (con-
tained in classω1) from the other echoes, using the one-class SVM
methodology detailed in 2.1. A training set ofNt = 500 echoes
belonging to classω1 is used with a percentage ofν = 1% of out-
liers to construct the separating hyperplane. The classifier is then
applied on the whole data set composed of18305 echoes. The re-
sulting confusion matrix given in Table 1 highlights the good results
of this anomaly detection strategy.

Predicted Class

A
ct

ua
l ω1 ω2, ..., ω14

ω1 96.72 % 3.28 %
ω2, ..., ω14 3.34 % 96.66 %

Table 1. Confusion matrix for anomaly detection.
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Fig. 2. Fisher criterion.

3.2. Feature extraction

The second classification step consists of classifying the echoes be-
longing to classesω2, ..., ωK using the parameters defined in Section
2.2. In order to give an idea of the discrimination power of these pa-
rameters, we have computed their Fisher criterion as definedin [12,
p. 117]. Figure 2 shows that the parameters directly relatedto the al-
timetric echo such as skewness, peakiness and kurtosis are of major
importance for classifying the altimetric signals according to their
shapes.

3.3. Bayesian classification

The Bayesian classifier has been applied to feature vectorsθp result-
ing from the projection ofθ on theK − 2 discriminant axes. More
precisely,ni = 40 echoes have been manually selected for each
class (i = 1, ..., 14) resulting in a total ofntotal = 560 signals. The
conditional pdfsf (θp|ωi ) have been assumed to be Gaussian (this
assumption has been validated using most considered databases).
The confusion matrix displayed in Table 2 illustrates the classifi-
cation performance. This confusion matrix has been obtained using
the “Leave-One-Out” method [12, p. 485]. More precisely,ntotal−1
signals are used to train the classifier and the remaining signal is clas-
sified using the proposed classification strategy (feature selection +
LDA + Bayesian rule). This operation is repeatedntotal times and the
confusion matrix is obtained after averaging thentotal classification
results. The results depicted in Table 2 show the good performance
of the proposed pattern recognition system for classifyingaltimetric
signals according to their shapes. Figures 3 and 4 show examples of
classified altimetric signals in the two classesω4 andω13 confirming
the good classification results.

4. CONCLUSIONS

This paper studied a pattern recognition system for classifying dif-
ferent shapes of altimetric signals. The system consisted of three



Predicted Class

A
ct
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lC

la
ss

ωi 2 3 4 5 6 7 8 9 10 11 12 13 14
2 98 0 0 2 0 0 0 0 0 0 0 0 0
3 0 86 2 2 0 7 0 2 0 0 0 0 0
4 0 3 88 3 0 3 3 0 0 0 0 0 0
5 0 0 0 98 0 0 0 0 0 0 0 0 0
6 0 0 0 0 65 33 0 0 0 0 0 0 0
7 0 0 0 12 0 83 0 0 0 0 0 2 0
8 0 0 0 0 0 5 82 2 0 7 0 2 0
9 0 0 0 0 0 0 11 85 0 0 0 2 0
10 0 0 0 0 0 14 2 0 76 0 2 5 0
11 0 0 0 0 0 10 2 0 0 85 0 0 0
12 0 0 0 2 0 2 0 0 0 0 96 0 0
13 0 0 0 3 0 8 0 0 3 0 0 88 0
14 0 0 0 7 0 0 0 0 0 0 0 0 93

Table 2. Confusion matrix after anomaly detection.
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Fig. 3. Some altimetric signals classified in classω4.
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Fig. 4. Some altimetric signals classified in in classω13.

steps, i.e., anomaly detection, feature extraction and Bayesian clas-
sification. The results obtained with the proposed system onreal
JASON-2 altimetric data are promising. One interest of thisclassi-
fication strategy is to isolate pathological altimetric waveforms that
might be processed by appropriate modified retracking algorithms.
Note that an interesting algorithm was recently studied andvalidated
in [13] for the processing of peaky altimetric waveforms such as the
ones found in classesω7 andω13. Future works will be dedicated to
the study of other retracking algorithms corresponding to the differ-
ent classes resulting from PISTACH project.
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