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ABSTRACT

This paper addresses the problem of classifying altimsigitals ac-
cording to their shapes. The proposed classifier is dividemthree
steps. A one-class support vector machine method is first tese
isolate the large amount of Brown-like echoes from othegsals
which are considered as outliers. The second step extradiagnt
features from the the remaining echoes (which cannot be deell
scribed by the Brown model). These features are projecttxdis-
criminant axes using linear discriminant analysis. Thd fitep clas-
sifies the projected feature vectors using a standard Bayekssi-
fier. The proposed three step classification strategy isiated on
supervised real altimetric echoes.

1. INTRODUCTION

The use of altimetry measurements over ocean surfaces kas
demonstrating its effectiveness for many years. Due tortipedved
ability of new altimeters to acquire return echoes from aseaany
efforts are now devoted to a better understanding of theatggrear
the coasts, in the hydrological basins and over land sisfaldee use
of altimetry measurements over all these surfaces is nowladsa-
tified goal for present and future altimetry missions (carianal
or not). Even though the physical processes that induceetitic
signals over land, coastal areas and inland water are etiffethe
contamination of land signals in the altimetric measuremsenn-
siderably damages the availability and the quality of tha dathese
cases. Consequently, it becomes crucial to be able tofgladtinet-
ric echoes with different shapes with two main objectivebe Tirst
objective is to propose dedicated algorithms (called cktray algo-
rithms) able to extract the best geophysical informatiamfreach
return echo. The second objective is to provide to the usen-an
formation about the signal shape giving him the level of aerice
he can put on the various retracking algorithm output. A jonev
work presented in [1] addressed the problem of classifyltimet-
ric signals according to the overflown surface. This papewstthat
the methodology proposed in [1] can be modified for classifial-
timetric signals according to their shapes.

2. ATIMETRIC SIGNAL MODEL AND PATTERN
RECOGNITION SYSTEM

The objective of this paper is to propose a fast pattern mitiog
algorithm for classifying different shapes of altimetrigrsals. More
precisely, the algorithm will assign a given altimetricrsdto one
of K classes denoted as, ..., wx. Each class; is characterized
by a templatel’; = [T3(1),..., T:(N)], N being the echo length.
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Fig. 1. Different shapes of altimetric signals to be classified.
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The K = 14 class templates used in this study have been studied
in the PISTACH project [2] and are depicted in Fig. 1. A given
altimetric signal from class; is supposed to be a noisy version of
the corresponding templai®; .

The templatel’; associated to the first class results from a sim-
plified formulation of Brown’s model. Brown’s model was iiailly
studied in [3] and [4]. It has been shown to be appropriate doem
than95% of all altimetric waveforms backscattered from ocean sur-
faces [2]. The simplified formulation considered in this @aps-
sumes that the received altimeter waveform is parameteby ¢hree
parameters: the amplitud®, the epochr and the significant wave
height SWH. An altimeter waveform denoted $) can be classi-
cally written as
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denotes the speed of Iight,andaf, are two known parameters (de-
pending on the satellite and on the altimeter) & the instrument
thermal noise. The thermal noise can be classically estnfabm
the first data samples @ft) and subtracted from (1). As a conse-
guence, the additive noisk; can be removed from the model (1)
with a very good approximation. The received signal is saahpl



with the sampling period’s, yielding
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Note that the paramete? in (3) represents the amplitude of the
waveform, the epoch corresponds to the central point of the “lead-
ing edge”, while the significant wave height SWH is relatedhe
slope of the “leading edge”. The three parametgrs, SWH can
be estimated from any altimetric signal from class using the
maximum likelihood estimator (MLE) [5]. The mean squareoerr
between the received altimetric signal and the estimategltte
T, (obtained after replacing the unknown paramefers, SWH by
their MLES) will be denoted as MSE.

The proposed pattern recognition system contains thréerdif
ent components referred to as anomaly detection, feattiraction
and Bayesian classification. These components are detnilbe
following subsections.

2.1. Anomaly detection

Anomaly detection has received a great attention in thealitee
(see for instance the recent survey of Chandola [6] anderbes
therein). This paper concentrates on the one-class suppcttr
machine (SVM) method [7, Chap. 8], [8] that has shown inti&mgs
properties in many applications. These applications oheeldocu-
ment classification [9] and audio signal segmentation [T8E one-

class SVM method is used here as a way of isolating Brown echoe

(classwy) from abnormal echoes departing from the Brown model
(classesus, ..., w14). This step is interesting since it allows one to
isolate very fast the large number of echoes that can begeped
accurately by the Brown model. Only echoes declared as ataior
will enter the feature extraction and Bayesian classificatilocks.

The anomaly detection procedure considered in this seasen
sociates to any altimetric waveform3adimensional vectofgp =
(P, 7, SWH) composed of the altimetric signal amplitueteepochr
and significant wave height SWH. Atraining set& {z1,...,zN, }
composed ofN; signals associated to class is supposed to be
available. This training set contains Brown echoes astastia real
signals backscattered by ocean surfaces.

The first step of the one-class SVM approach maps the trainin
data vectors into a feature spaEevia an appropriate transforma-
tion ®. The transformatio® is chosen such that the inner product
between two transformed vectofgx) and ®(y) defines a kernel
k(x,y) = (®(x), ®(y)). This paper focuses on the Gaussian ker-
nel defined as

where the kernel parametef has been optimized using the kernel-
alignment criterion developed in [11].

The second step of the one-class SVM method determines
separating hyperplane between the data vectors of ¢classid the
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anomalies (belonging to classes, ..., wx). The separating hyper-
plane is the set of vectors such that{w, ®(x)) — p = 0. Itis
classically determined by minimizing the following criiem [8]

HWM~L§5—
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forw € F,p € Rand¢ = (&1, ...,&n,) € Rt with the constraints
& > 0and(w, ®(x;)) > p— & fori = 1,..., N:. Note that the
value of parametew is related to the fraction of possible outliers as
discussed in [8]. The slack variablgsaccount for possible errors in
the anomaly detection procedure. Indegd;> 0 means there is an
error in the classification of the training vectes whereast; = 0
means the vectat; has been classified without error.
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2.2. Feature extraction

After the anomaly detection step, Brown echoes belongirgass
w1 have been isolated (more thah% of ocean waveforms are typ-
ically classified as Brown echoes). The second step of the pro
posed pattern recognition system consists of classifyiegemain-
ing signals (which have not been identified as Brown echoe)ea

K — 1 classesws, ...,wx. The present study concentrates on alti-
metric waveforms registered by the Jasbsatellite. Many features
can be computed from an altimetric waveform for classifaapur-
poses. These features include statistical moments (mesaanee,
skewness, kurtosis, ...), parameters related to the Broadeh{sig-
nificant wave height, backscatter coefficient, ...) or fesguelated
to the shape of the altimetric waveform (peakiness, rise tifithe
echo, ...). The features used for classifying altimetgmal shapes
are summarized below

the latitude (LAT),
the longitude (LON),

the retrodiffusion coefficiento = 101log,,(P)+C, C being
a constant related to gain control,

e the parametes. defined in (2),

e the significant wave height (SWH),

the maximum value of the echo (MAX),
the mean value of the echo (MEAN),
the peakiness defined @&,

the variance of the echo,

the skewness of the echo,

e the kurtosis of the echo,

the ramp (slope of the echo between samplasd60),
e the attitude (slope of the echo between sampleand104).

It is important to note here that the number of features cabeo
smaller than the number of classes, i.e., has to contairasitAe —

2 = 12 parameters. Following the ideas developed in [1], we pro-
pose to extract pertinent information from these featuresisging
linear discriminant analysis (LDA). LDA consists of projeg any
data vecto® (containing the parameters of interest) onto appropri-
ate axes (called discriminant axes). The resulting pregeétature
vector will be denoted a8,. The discriminant axes are defined as
the eigenvectoray associated to the non zero eigenvalues of the fol-

lowing generalized eigenvalue problem
a

g
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where S and Sy are the between-class and within-class scatter

matrices defined as
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and where9; is the subset of the learning set containing the param-

eter vectors associated to the clags m; is the average of these
parameter vectors ané = 2 3% n;m; is the total mean vector

withn = Zf; n; (see [12, p. 117] for more details).

2.3. Bayes decision rule

The Bayesian classifier (BC) is optimal in the sense thatrifmizes
the probability of classification error (or an appropriask{12, p.
25]). The BC requires to define a loss function summariziegctist
of the different classification errors. In the case of a zare-loss
function (i.e., no loss to correct decisions and unit losaryg er-
ror), the BC reduces to the maximum a posteriori (MAP) rulécivh
assigns a given waveform defined @y to classw; if
[ (Op|wi) P(wi) > f(Bplw;) P(w;) forall j # i

whereP(w;) is the prior probability of the class; and f (0, |w;) is
the probability density function (pdf) @, conditionally upon the

Predicted Class

— w1 w2, ..., W14
E w1 96.72 % | 3.28%
8 [w2,nwus | 334 % | 96.66 %

Table 1. Confusion matrix for anomaly detection.

Fisher Criterion
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Fig. 2. Fisher criterion.

3.2. Feature extraction

The second classification step consists of classifying thees be-
longing to classess, ..., wk using the parameters defined in Section

classw;. This study assumes that the different classes are equal§-2. In order to give an idea of the discrimination power @fsth pa-

likely (i.e., P(w;) = 1/(K — 1) forall j = 2, ..., K). In this case,
the BC reduces to the maximum likelihood classifier. The manxn
likelihood classifier assign, to classw; if f (0p|ws) > f (0p|w;)
for all 7 # i. We assume that the conditional pdf$6,|w;) are
Gaussian. Indeed, this assumption has been shown to beaddeso
for the parameters of altimetric waveforms. Note that tlaisti-
cal properties of the observed altimetric sighals are mifiewt to
determine (the template is corrupted by multiplicativeckbe noise
with gamma distribution and by additive Gaussian noiselsTft is
more complicated to derive the Bayesian classifier basedttiron
the altimetric signals.

3. SIMULATION RESULTS

Many experiments have been conducted to validate the pedpos
shape classification strategy. The results presentedsipdper have
been obtained from a signal database constructed from-2aslbin
metric signals.

3.1. Anomaly detection

The first classification step consists of isolating Brownassh(con-

rameters, we have computed their Fisher criterion as defing®,
p. 117]. Figure 2 shows that the parameters directly rekatéuk al-
timetric echo such as skewness, peakiness and kurtosi$ ieuagar
importance for classifying the altimetric signals accogdio their
shapes.

3.3. Bayesian classification

The Bayesian classifier has been applied to feature vegjaesult-

ing from the projection of on the K — 2 discriminant axes. More
precisely,n; = 40 echoes have been manually selected for each
class { = 1, ..., 14) resulting in a total ofuoa = 560 signals. The
conditional pdfsf (6, |w; ) have been assumed to be Gaussian (this
assumption has been validated using most considered datba
The confusion matrix displayed in Table 2 illustrates thesslfi-
cation performance. This confusion matrix has been obdairséng

the “Leave-One-Out” method [12, p. 485]. More preciselyia — 1
signals are used to train the classifier and the remainimgbigjclas-
sified using the proposed classification strategy (feateiecton +
LDA + Bayesian rule). This operation is repeatagl, times and the
confusion matrix is obtained after averaging thea classification
results. The results depicted in Table 2 show the good petnce

of the proposed pattern recognition system for classifyiltignetric
signals according to their shapes. Figures 3 and 4 show dgarop

tained in classo1) from the other echoes, using the one-class Svmclassified altimetric signals in the two classgsandw:3 confirming

methodology detailed in 2.1. A training set 8f; = 500 echoes
belonging to class; is used with a percentage of= 1% of out-
liers to construct the separating hyperplane. The classsithen
applied on the whole data set composed &305 echoes. The re-
sulting confusion matrix given in Table 1 highlights the daesults
of this anomaly detection strategy.

the good classification results.

4. CONCLUSIONS

This paper studied a pattern recognition system for chassjfdif-
ferent shapes of altimetric signals. The system consistetiree
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Table 2. Confusion matrix after anomaly detection.

Class 4: Linear echoes
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Fig. 3. Some altimetric signals classified in class

Class 13: Brown + peak on the plateau
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Fig. 4. Some altimetric signals classified in in class.

steps, i.e., anomaly detection, feature extraction anc:8iay clas-
sification. The results obtained with the proposed systemeah
JASON-2 altimetric data are promising. One interest of théssi-
fication strategy is to isolate pathological altimetric wBrms that
might be processed by appropriate modified retracking dlgos.
Note that an interesting algorithm was recently studiedwatidated
in [13] for the processing of peaky altimetric waveformstsas the
ones found in classes; andw.3. Future works will be dedicated to
the study of other retracking algorithms correspondindhéeodiffer-
ent classes resulting from PISTACH project.
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