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ABSTRACT

This paper studies a Bayesian algorithm for estimating the param-
eters associated to Brown’s model. The joint posterior distribution
of the unknown parameter vector (amplitude, epoch and significant
wave height) associated to this model is derived. This posterior is too
complex to obtain closed form expressions of the minimum mean
square error and the maximum a Posteriori estimators. We propose
to sample according to this distribution using an hybrid Metropo-
lis within Gibbs algorithm. The simulated samples are then used to
estimate the unknown parameters of Brown’s model. The proposed
strategy provides better estimations than the standard maximum like-
lihood estimator at the price of an increased computational cost.

Index Terms— Altimetry, Bayesian estimation, Gibbs sampler,
Metropolis-Hastings algorithm.

1. INTRODUCTION

The retracking algorithm is a key algorithm in altimetric ground pro-
cessing chains. This algorithm estimates ocean parameters from
the measured waveforms. It has a major impact on the determina-
tion of the so-called sea state bias. Several teams have been work-
ing intensively to characterize and refine retracking. Recent pa-
pers have shown the very good agreement between retracking re-
sults obtained with Topex, Poseidon-1, Poseidon-2 and Envisat al-
timeters. A common idea in most actual retracking strategies is
to estimate the unknown ocean parameters by comparing the mea-
sured altimetric waveform with a return power model according to
least square estimators derived from the maximum likelihood princi-
ple. Because consecutive altimetric waveforms are representative of
continuous ocean processes, it seems interesting to introduce prior
knowledge when estimating the ocean parameters (whereas wave-
forms are processed independently from the previous ones in actual
retracking procedures). This paper investigates a Bayesian approach
which combines information coming from the data (contained in the
likelihood) and prior knowledge regarding the unknown parameters
(contained in the parameter prior distribution). The resulting poste-
rior distribution for the unknown parameters is too complex to de-
rive the standard Bayesian estimators. Monte Carlo Markov chains
(MCMCs) are then used to generate samples distributed according
to this posterior. The unknown parameters of Brown’s model are
finally estimated using these generated samples.
The paper is organized as follows: Section 2 recalls the conventional
Brown’s model. The posterior distribution of the corresponding un-
known parameters is derived in Section 3. The MCMC method pro-
posed to generate samples distributed according to this posterior is
presented in Section 4. Simulations results depicted in Section 5
illustrate the performance of the proposed estimation strategy. Con-
clusions and perspectives are reported in Section 6.

2. DATA MODEL AND PROBLEM FORMULATION

According to Brown’s model [1], altimeter waveforms are charac-
terized by four parameters: the amplitude Pu (or equivalently the
backscatter coefficient σ0), the epoch τ , the significant wave height
SWH and the off-nadir angle ξ. The resulting altimeter waveform
denoted sk can be written

sk =
P
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and α, γ, σ2
p are three known parameters depending on the satellite.

In practice, there are two kinds of noises corrupting the altimeter
waveforms: an additive instrumental thermal noise and a multiplica-
tive speckle noise. The effect of the additive noise can be mitigated
by subtracting from the observations an average of the first wave-
form samples. This paper assumes that this operation does not affect
the estimation of the other parameters. In this case, the observed
altimeter waveform can be written

yk = sknk, k = 1, ..., K, (2)

where K is the number of observed samples, nk is a multiplicative
speckle noise distributed according to a gamma distribution G(L, L)
(using the notation of [2, p. 451]) and L is the so-called number
of looks. Actual retracking procedures estimate the unknown pa-
rameter vector θ = (Pu, τ, SWH, ξ) of (1) by using the maximum
likelihood (ML) principle [3]. The properties of the maximum likeli-
hood estimator (MLE) for estimating the Brown’s model parameters
have been studied in [4]. A comparison between the mean square er-
rors (MSEs) of the MLE with the corresponding Cramér-Rao lower
bounds has shown there is some space for improving estimation of
θ. This is the purpose of the Bayesian estimation strategy explored
in this paper.

3. BAYESIAN ESTIMATION

This paper studies a new Bayesian strategy for estimating the
unknown parameter vector θ from altimeter waveform samples.
Bayesian estimators are based on the posterior distribution of θ
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denoted as f(θ|y) where y = (y1, ..., yK) denotes the altimetric
waveform vector. This posterior distribution is related to the like-
lihood of the observations f(y|θ) and the parameter prior density
f(θ) via Bayes’ theorem:

f(θ|y) =
f(y|θ)f(θ)

f(y)
∝ f(y|θ)f(θ), (3)

where ∝ stands for “proportional to”. As a consequence, Bayes esti-
mators use prior information regarding the unknown parameter vec-
tor (summarized in f(θ)) in addition to the likelihood which is used
for most common estimation methods (including the ML method).
This paper shows that significant gain in estimation performance can
be obtained when using appropriate prior information regarding the
unknown parameters. The likelihood function and parameter priors
used for the proposed analysis are defined below.

3.1. Likelihood

In the case of independent noise samples nk, the likelihood of the
observation vector y can be expressed as the product of K gamma
probability density functions (pdfs):

f(y|θ) =

[
LL

Γ(L)

]K

exp
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−L

K∑
k=1
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)
K∏

k=1

yL−1
k

sL
k
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3.2. Parameter priors

This paper proposes to use three kinds of parameter priors:

• uniforms priors: for a given parameter, we have computed
the histogram of estimates computed on a satellite cycle and
determined an interval containing most estimates. The pa-
rameter prior is supposed to be uniform on this interval. For
instance, according to Fig. 1, the prior for SWH (in meters)
is uniform on [0, 11], the prior for τ is uniform on [30, 32.5]
(τTs is expressed in seconds where Ts is the sampling rate)
and the prior for Pu (in FFT power units) is uniform on
[9.5, 25] (note that parameter Pu is related to σ0 via an
appropriate scaling factor).

• priors constructed from histograms associated to satellite cy-
cles: these histograms (also presented in [5]) have been in-
terpolated by using linear combination of splines [6]. These
approximations provide smooth PDFs for the unknown pa-
rameters as illustrated in Fig. 1.

• dynamic priors: priors constructed at a given time instant t
from parameter estimates resulting from the altimeter wave-
forms at time instant t− 1. In this paper, we have used Gaus-
sian priors with appropriate constant variances and means re-
sulting from estimates at time t − 1.

3.3. Posterior distribution

The posterior distribution of the unknown parameter vector θ can be
computed from Bayes’ theorem according to (3). Unfortunately, this
posterior distribution is too complex to derive closed-form expres-
sions of standard Bayesian estimators such as the minimum mean
square error (MMSE) or maximum a posteriori (MAP) estimators
[7]. Instead, this paper proposes to use MCMC methods to generate
samples according to the posterior distribution of θ. These simulated
samples are then used to approximate the MMSE or MAP estimators
of θ. The sampler used to generate samples distributed according to
the posterior (3) is detailed in the next section.

Fig. 1: Histograms of σ0, τ , SWH (∗ raw data, – extrapolated data).

4. A METROPOLIS WITHIN GIBBS SAMPLER

4.1. Gibbs sampler

MCMC methods are simulation algorithms which draw samples ac-
cording to a posterior distribution known up to a multiplicative con-
stant [2]. A famous MCMC method is the Gibbs sampler which
generates iteratively samples distributed according to the full condi-
tional distributions associated to the posterior distribution of interest.
To generate samples according to f(θ|y), the Gibbs sampler uses
iteratively the sampling procedures reported in ALGO. 1. After a so-
called burn-in period (i.e. when t is sufficiently large), the samples
generated according to the algorithm below are known to be dis-
tributed according to the target distribution f(θ|y). However, some
of the below generations are not easy to handle because the condi-
tional distributions do not belong to known families of distributions.
In such cases, hybrid Metropolis-within-Gibbs moves can be used
instead. These moves consist of generating samples distributed ac-
cording to an appropriate proposal distribution and accept or reject
these samples with a given probability. This strategy is detailed in
the next section.

for each t = 1,...,T do

· generate P t+1
u according to f(Pu|τ t, SWHt, ξt, y)

· generate τ t+1 according to f(τ |P t+1
u , SWHt, ξt, y)

· generate SWHt+1 according to f(SWH|τ t+1, P t+1
u , ξt, y)

· generate ξt+1 according to f(ξ|SWHt+1, τ t+1, P t+1
u , y)

ALGO. 1: Gibbs Sampler Algorithm.

4.2. Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is an extremely flexible
method for generating samples distributed according to a given pdf.
Denote as f the target pdf, here one of the conditional pdfs appear-
ing in ALGO. 1 and as q a proposal density used to generate “candi-
dates” (also referred to as instrumental distribution). The MH algo-
rithm constructs a Markov chain whose stationary distribution is our
distribution of interest f using the proposal q. After initialization,
the MH algorithm generates a candidate φ according to the proposal
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(φ ∼ q). This candidate is accepted or rejected according to the
following rule

θt+1 =

⎧⎨⎩φ with probability ρ = min

{
1, f(φ|y)

f(θt|y)

q(θt|φ)
q(φ|θt)

}
θt otherwise.

Note that we only need to know f and q up to proportionally con-
stants since both constants cancel in the calculation of ρ. The instru-
mental distributions used in this paper are the a priori distributions.
In this case, the MH acceptation probability ρ reduces to the likeli-
hood ratio ρ = min

{
1, f(y|φ)/f(y|θt)

}
.

The hybrid Metropolis-within-Gibbs algorithm includes the ac-
cept/reject procedure in ALGO. 1, when the generation according
to a conditional distribution is not possible. The Metropolis-within-
Gibbs algorithm generating samples distributed according to the
posterior (3) is summarized in ALGO. 2. After these simulations
have been conducted, the MMSE estimator of θ is computed as

θ̂MMSE =
1

nc

T=nb+nc∑
t=nb+1

θt, (5)

where nb is the number of burn-in iterations, nc is the number of
iterations used for computing the estimator and θt is the parameter
vector generated at iteration t.

for each t = 1,...,T do

· generate φPu according to f(Pu)

P t+1
u =

⎧⎪⎨⎪⎩
φPu with probability

ρ = min
{

1,
f(y|φPu ,τt,SWHt,ξt)

f(y|P t
u,τt,SWHt,ξt)

}
P t

u otherwise

· generate φτ according to f(τ)

τ t+1 =

⎧⎪⎨⎪⎩
φτ with probability

ρ = min
{

1,
f(y|P t+1

u ,φτ ,SWHt,ξt)

f(y|P t+1
u ,τt,SWHt,ξt)

}
τ t otherwise

· generate φSWH according to f(SWH)

SWHt+1 =

⎧⎪⎨⎪⎩
φSWH with probability

ρ = min
{

1,
f(y|P t+1

u ,τt+1,φSWH,ξt)

f(y|P t+1
u ,τt+1,SWHt,ξt)

}
SWHt otherwise

· generate φξ according to f(ξ)

ξt+1 =

⎧⎪⎪⎨⎪⎪⎩
φξ with probability

ρ = min
{

1,
f(y|P t+1

u ,τt+1,SWHt+1,φξ)

f(y|P t+1
u ,τt+1,SWHt+1,ξt)

}
ξt otherwise

ALGO. 2: Metropolis within Gibbs Algorithm.

5. SIMULATIONS

This section shows some simulation results obtained with the pro-
posed Bayesian estimation method. Synthetic signals have been gen-
erated with the following parameters: L = 100 (number of looks),
K = 104 (number of samples) and ξ = 0 (off-nadir angle). The
other parameters σ2

p and γ have been computed according to the En-
visat configuration [8].

5.1. Uniform priors

The first set of simulations has been obtained using uniform priors
for Pu, τ and SWH. Figures 2(b) show examples of posteriors for
the parameters Pu, τ and SWH estimated using the samples of the
proposed MCMC method. These posteriors have been obtained for
Pu = 0.41, τ = 31.2 and SWH = 1. The posterior pdfs of Pu,
τ and SWH are clearly centered around values which are close to
the actual ones. Figures 2(a) compare the MSEs of the MLE and
Bayesian estimator. These figures have been obtained with 30 differ-
ent equidistantly spaced values of SWH (Pu and τ have been drawn
randomly according to their prior distributions). The two algorithms
perform similarly for the estimation of the amplitude Pu and the
epoch τ (MSEs expressed in m2). However, the estimation of SWH
is clearly improved when using the Bayesian algorithm (there is an
improvement of 30 centimeters to 60 centimeters in the square root
MSE of SWH when using the proposed Bayesian method).

(a) MSEs ( ∗ Bayes, � MLE). (b) Posterior PDFs.

Fig. 2: MSEs and Posterior distribution of Pu, τ and SWH.

5.2. Priors constructed from satellite cycles

This section investigates the use of prior distributions constructed
from the histograms depicted in figures 1. These histograms (red
stars) have been extrapolated with B-splines providing continuous
priors (blue lines) for the different parameters (Pu, τ and SWH).
The parameter posteriors are then obtained as the product between
the likelihood and the priors. Figures 3 show examples of data like-
lihoods (red stars), posteriors (blue circles) and a priori distribu-
tions (green triangles) for the epoch parameter τ . The first figure
(left) shows that the posterior mode is closer to the actual value of
τ = 31.5 when compared to the likelihood. Thus, the prior dis-
tribution has provided useful information for the estimation of this
parameter. The right figure shows another example of posterior ob-
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tained for τ = 30.5 (a very unlikely a priori value of τ !). In this case,
the prior distribution is not in agreement with the actual value of τ .
As a result, the ML estimator has to be preferred to the Bayesian es-
timator for the estimation of τ . These two examples show that using
parameter histograms as priors does not systematically improves the
estimation performance.

Fig. 3: × likelihood, ◦ conditional posterior, � prior and ∗ τ .

5.3. Dynamic Gaussian priors

This section studies dynamic Gaussian priors with time-varying
means and appropriate variances. More precisely, the mean of each
parameter prior at a given time instant t has been chosen as the
estimated value of this parameter at time instant t − 1. The vari-
ance of this prior has been adjusted to a large value computed using
estimates from a satellite cycle. In order to illustrate the perfor-
mance of this kind of prior, we have generated synthetic signals
with time-varying parameters Pu, SWH and τ corresponding to
typical altimeter waveforms. Figures 4 compare the MSEs of the
MLE and the Bayesian estimator (computed from 100 Monte Carlo
runs). Both estimators provide similar performance for the estima-
tion of Pu. The estimation of τ is slightly improved when using the
Bayesian method (a gain up to six centimeters has been observed
for this example). Finally, the Bayesian estimator of SWH clearly
outperforms the MLE as in the case of uniforms priors (a gain of 29
to 58 centimeters is observed for this example).

Fig. 4: MSEs ( ∗ Bayes, � MLE).

5.4. Sampler convergence

The Metropolis-within-Gibbs sampler allows one to draw samples
asymptotically distributed according to the posterior distribution

f(θ|y). Controlling the sampler convergence is a problem which
has received considerable interest in the literature (see for instance
[9] and references therein). For instance, the number of burn-in
samples can be determined thanks to the popular potential scale
reduction factor (PSRF) [10] (the reader is invited to consult [10]
and [11] for definitions). For a given value of nb and nc in (5), a
value of the PSRF below 1.2 indicates a good convergence of the

sampler. The values of the PSRF denoted as
√

ρ̂ for the different
parameters Pu, τ and SWH are reported in Table 1 for nb = 3000
and nc = 5000. These values have been obtained by running 100
parallel chains and by computing the associated between-class and
within-class variances. They clearly indicate that the sampler has
converged for nb = 3000 and nc = 5000.

Pu

√
ρ̂ τ

√
ρ̂ SWH

√
ρ̂

0.4 1.0048 31 1.0224 3 1.0155

Table 1: Potential Scale Reduction Factors.

6. CONCLUSIONS

This paper studied Bayesian sampling algorithms for estimating
the parameters of altimeter waveforms. The proposed estimation
methodology showed that defining appropriate prior information
regarding the unknown parameters can be beneficial for their es-
timation. It is interesting to note that the posterior distributions
derived in this paper were used for parameter estimation. However,
they can also provide uncertainties regarding these estimations. The
Bayesian estimator presented in this paper was implemented using
an hybrid Metropolis-within-Gibbs sampler whose convergence was
monitored by the potential scale reduction factor. Perspectives in-
clude the optimization of the burn-in period which might reduce the
computational cost of the proposed algorithm.
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